on the problems in "6 Hyperbolic functions/6.5 Hyperbolic secant"
Test results for the 6 problems in " $6.5 .1(c+d x)^{\wedge} m(a+b \text { sech })^{\wedge} n . t x t "$
Problem 1: Unable to integrate problem.

$$
\int(d x+c)^{3} \operatorname{sech}(b x+a) \mathrm{d} x
$$

Optimal(type 4, 160 leaves, 9 steps):
$\frac{2(d x+c)^{3} \arctan \left(\mathrm{e}^{b x+a}\right)}{b}-\frac{3 \mathrm{I} d(d x+c)^{2} \text { polylog }\left(2,-\mathrm{Ie}^{b x+a}\right)}{b^{2}}+\frac{3 \mathrm{I} d(d x+c)^{2} \operatorname{polylog}\left(2, \mathrm{Ie}^{b x+a}\right)}{b^{2}}+\frac{6 \mathrm{I} d^{2}(d x+c) \operatorname{polylog}\left(3,-\mathrm{Ie}^{b x+a}\right)}{b^{3}}$
$-\frac{6 \mathrm{I} d^{2}(d x+c) \text { polylog }\left(3, \mathrm{Ie} \mathrm{e}^{b x+a}\right)}{b^{3}}-\frac{6 \mathrm{I} d^{3} \operatorname{polylog}\left(4,-\mathrm{I} \mathrm{e}^{b x+a}\right)}{b^{4}}+\frac{6 \mathrm{I} d^{3} \mathrm{polylog}\left(4, \mathrm{I} \mathrm{e}^{b x+a}\right)}{b^{4}}$
Result (type 8, 16 leaves):

$$
\int(d x+c)^{3} \operatorname{sech}(b x+a) \mathrm{d} x
$$

Problem 2: Result more than twice size of optimal antiderivative.

$$
\int(d x+c) \operatorname{sech}(b x+a) \mathrm{d} x
$$

Optimal (type 4, 54 leaves, 5 steps):

$$
\frac{2(d x+c) \arctan \left(\mathrm{e}^{b x+a}\right)}{b}-\frac{\mathrm{I} d \operatorname{polylog}\left(2,-\mathrm{Ie}^{b x+a}\right)}{b^{2}}+\frac{\mathrm{I} d \operatorname{polylog}\left(2, \mathrm{I} \mathrm{e}^{b x+a}\right)}{b^{2}}
$$

Result(type 4, 448 leaves):
$\frac{\mathrm{I} d \operatorname{dilog}(-\mathrm{I} \cosh (b x+a)-\mathrm{I} \sinh (b x+a))}{b^{2}}-\frac{\mathrm{I} d \ln \left((1-\mathrm{I}) \cosh \left(\frac{b x}{2}+\frac{a}{2}\right)+(1+\mathrm{I}) \sinh \left(\frac{b x}{2}+\frac{a}{2}\right)\right) x}{b}$

$$
\begin{aligned}
& +\frac{\mathrm{I} d \ln (-\mathrm{I} \cosh (b x+a)-\mathrm{I} \sinh (b x+a)) \ln \left((1-\mathrm{I}) \cosh \left(\frac{b x}{2}+\frac{a}{2}\right)+(1+\mathrm{I}) \sinh \left(\frac{b x}{2}+\frac{a}{2}\right)\right)}{b^{2}} \\
& -\frac{\mathrm{I} d \ln \left((1-\mathrm{I}) \cosh \left(\frac{b x}{2}+\frac{a}{2}\right)+(1+\mathrm{I}) \sinh \left(\frac{b x}{2}+\frac{a}{2}\right)\right) a}{b^{2}}-\frac{\mathrm{I} d \operatorname{dilog}(\mathrm{I} \cosh (b x+a)+\mathrm{I} \sinh (b x+a))}{b^{2}} \\
& +\frac{\mathrm{I} d \ln \left((1+\mathrm{I}) \cosh \left(\frac{b x}{2}+\frac{a}{2}\right)+(1-\mathrm{I}) \sinh \left(\frac{b x}{2}+\frac{a}{2}\right)\right) x}{b} \\
& -\frac{\mathrm{I} d \ln (\mathrm{I} \cosh (b x+a)+\mathrm{I} \sinh (b x+a)) \ln \left((1+\mathrm{I}) \cosh \left(\frac{b x}{2}+\frac{a}{2}\right)+(1-\mathrm{I}) \sinh \left(\frac{b x}{2}+\frac{a}{2}\right)\right)}{b^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{\mathrm{I} d \ln \left((1+\mathrm{I}) \cosh \left(\frac{b x}{2}+\frac{a}{2}\right)+(1-\mathrm{I}) \sinh \left(\frac{b x}{2}+\frac{a}{2}\right)\right) a}{b^{2}}+\frac{\mathrm{I} d \ln (-\mathrm{I} \cosh (b x+a)-\mathrm{I} \sinh (b x+a)) x}{2 b} \\
& -\frac{\mathrm{I} d \ln (\mathrm{I} \cosh (b x+a)+\mathrm{I} \sinh (b x+a)) x}{2 b}+\frac{\mathrm{I} d \ln (-\mathrm{I} \cosh (b x+a)-\mathrm{I} \sinh (b x+a)) a}{2 b^{2}}-\frac{\mathrm{I} d \ln (\mathrm{I} \cosh (b x+a)+\mathrm{I} \sinh (b x+a)) a}{2 b^{2}} \\
& -\frac{2 d a \arctan \left(\mathrm{e}^{b x+a}\right)}{b^{2}}+\frac{2 c \arctan \left(\mathrm{e}^{b x+a}\right)}{b}
\end{aligned}
$$

Problem 4: Unable to integrate problem.

$$
\int(d x+c)^{2} \operatorname{sech}(b x+a)^{3} \mathrm{~d} x
$$

Optimal(type 4, 160 leaves, 9 steps):

$$
\begin{aligned}
& \frac{(d x+c)^{2} \arctan \left(\mathrm{e}^{b x+a}\right)}{b}-\frac{d^{2} \arctan (\sinh (b x+a))}{b^{3}}-\frac{\mathrm{I} d(d x+c) \operatorname{polylog}\left(2,-\mathrm{Ie}^{b x+a}\right)}{b^{2}}+\frac{\mathrm{I} d(d x+c) \operatorname{polylog}\left(2, \mathrm{Ie} \mathrm{e}^{b x+a}\right)}{b^{2}} \\
& \quad+\frac{\mathrm{I} d^{2} \operatorname{poly} \log \left(3,-\mathrm{Ie} \mathrm{e}^{b x+a}\right)}{b^{3}}-\frac{\mathrm{I} d^{2} \operatorname{polylog}\left(3, \mathrm{I} \mathrm{e}^{b x+a}\right)}{b^{3}}+\frac{d(d x+c) \operatorname{sech}(b x+a)}{b^{2}}+\frac{(d x+c)^{2} \operatorname{sech}(b x+a) \tanh (b x+a)}{2 b} \\
& \text { Result(type 8, 182 leaves) : } \\
& \frac{\mathrm{e}^{b x+a}\left(b d^{2} x^{2}\left(\mathrm{e}^{b x+a}\right)^{2}+2 b c d x\left(\mathrm{e}^{b x+a}\right)^{2}+b c^{2}\left(\mathrm{e}^{b x+a}\right)^{2}-b d^{2} x^{2}+2 d^{2} x\left(\mathrm{e}^{b x+a}\right)^{2}-2 b c d x+2 c d\left(\mathrm{e}^{b x+a}\right)^{2}-b c^{2}+2 d^{2} x+2 c d\right)}{b^{2}\left(\left(\mathrm{e}^{b x+a}\right)^{2}+1\right)^{2}}+8(\mathrm{~d}) \\
& \int \frac{\mathrm{e}^{b x+a}\left(b^{2} d^{2} x^{2}+2 b^{2} c d x+b^{2} c^{2}-2 d^{2}\right)}{8 b^{2}\left(\left(\mathrm{e}^{b x+a}\right)^{2}+1\right)}
\end{aligned}
$$

Problem 5: Unable to integrate problem.

$$
\int\left(\frac{x}{\operatorname{sech}(x)^{7 / 2}}-\frac{5 x \sqrt{\operatorname{sech}(x)}}{21}\right) \mathrm{d} x
$$

Optimal(type 3, 31 leaves, 5 steps):

$$
-\frac{4}{49 \operatorname{sech}(x)^{7 / 2}}-\frac{20}{63 \operatorname{sech}(x)^{3 / 2}}+\frac{2 x \sinh (x)}{7 \operatorname{sech}(x)^{5 / 2}}+\frac{10 x \sinh (x)}{21 \sqrt{\operatorname{sech}(x)}}
$$

Result(type 8, 16 leaves):

$$
\int\left(\frac{x}{\operatorname{sech}(x)^{7 / 2}}-\frac{5 x \sqrt{\operatorname{sech}(x)}}{21}\right) \mathrm{d} x
$$

Problem 6: Unable to integrate problem.

$$
\int\left(\frac{x^{2}}{\operatorname{sech}(x)^{3 / 2}}-\frac{x^{2} \sqrt{\operatorname{sech}(x)}}{3}\right) \mathrm{d} x
$$

Optimal (type 4, 63 leaves, 7 steps):

$$
-\frac{8 x}{9 \operatorname{sech}(x)^{3 / 2}}+\frac{16 \sinh (x)}{27 \sqrt{\operatorname{sech}(x)}}+\frac{2 x^{2} \sinh (x)}{3 \sqrt{\operatorname{sech}(x)}}-\frac{16 I \sqrt{\cosh \left(\frac{x}{2}\right)^{2}} \operatorname{EllipticF}\left(I \sinh \left(\frac{x}{2}\right), \sqrt{2}\right) \sqrt{\cosh (x)} \sqrt{\operatorname{sech}(x)}}{27 \cosh \left(\frac{x}{2}\right)}
$$

Result(type 8, 20 leaves):

$$
\int\left(\frac{x^{2}}{\operatorname{sech}(x)^{3 / 2}}-\frac{x^{2} \sqrt{\operatorname{sech}(x)}}{3}\right) \mathrm{d} x
$$

Test results for the 25 problems in " $6.5 .2(e x)^{\wedge} m(a+b \operatorname{sech}(c+d x \wedge n))^{\wedge} p . t x t "$
Problem 1: Unable to integrate problem.

$$
\int x^{5}\left(a+b \operatorname{sech}\left(d x^{2}+c\right)\right) \mathrm{d} x
$$

Optimal(type 4, 110 leaves, 10 steps):

$$
\frac{a x^{6}}{6}+\frac{b x^{4} \arctan \left(\mathrm{e}^{d x^{2}+c}\right)}{d}-\frac{\mathrm{I} b x^{2} \operatorname{poly} \log \left(2,-\mathrm{I} \mathrm{e}^{d x^{2}+c}\right)}{d^{2}}+\frac{\mathrm{I} b x^{2} \operatorname{polylog}\left(2, \mathrm{Ie}^{d x^{2}+c}\right)}{d^{2}}+\frac{\mathrm{I} b \operatorname{polylog}\left(3,-\mathrm{I} \mathrm{e}^{d x^{2}+c}\right)}{d^{3}}-\frac{\mathrm{I} b \operatorname{poly} \log \left(3, \mathrm{I} \mathrm{e}^{d x^{2}+c}\right)}{d^{3}}
$$

Result(type 8, 37 leaves):

$$
\frac{a x^{6}}{6}+\int \frac{2 \mathrm{e}^{d x^{2}+c} b x^{5}}{\left(\mathrm{e}^{d x^{2}+c}\right)^{2}+1} \mathrm{~d} x
$$

Problem 2: Unable to integrate problem.

$$
\int x^{3}\left(a+b \operatorname{sech}\left(d x^{2}+c\right)\right) \mathrm{d} x
$$

Optimal(type 4, 64 leaves, 8 steps):

$$
\frac{a x^{4}}{4}+\frac{b x^{2} \arctan \left(\mathrm{e}^{d x^{2}+c}\right)}{d}-\frac{\mathrm{I} b \operatorname{poly} \log \left(2,-\mathrm{I} \mathrm{e}^{d x^{2}+c}\right)}{2 d^{2}}+\frac{\mathrm{I} b \operatorname{poly} \log \left(2, \mathrm{Ie}^{d x^{2}+c}\right)}{2 d^{2}}
$$

Result(type 8, 37 leaves):

$$
\frac{a x^{4}}{4}+\int \frac{2 \mathrm{e}^{d x^{2}+c} b x^{3}}{\left(\mathrm{e}^{d x^{2}+c}\right)^{2}+1} \mathrm{~d} x
$$

Problem 4: Unable to integrate problem.

$$
\int x^{3}\left(a+b \operatorname{sech}\left(d x^{2}+c\right)\right)^{2} \mathrm{~d} x
$$

Optimal(type 4, 106 leaves, 10 steps):

$$
\frac{a^{2} x^{4}}{4}+\frac{2 a b x^{2} \arctan \left(\mathrm{e}^{d x^{2}+c}\right)}{d}-\frac{b^{2} \ln \left(\cosh \left(d x^{2}+c\right)\right)}{2 d^{2}}-\frac{\mathrm{I} a b \operatorname{polylog}\left(2,-\mathrm{Ie}^{d x^{2}+c}\right)}{d^{2}}+\frac{\mathrm{I} a b \operatorname{poly} \log \left(2, \mathrm{I} \mathrm{e}^{d x^{2}+c}\right)}{d^{2}}+\frac{b^{2} x^{2} \tanh \left(d x^{2}+c\right)}{2 d}
$$

Result(type 8, 74 leaves):

$$
\frac{a^{2} x^{4}}{4}-\frac{x^{2} b^{2}}{d\left(\left(\mathrm{e}^{d x^{2}+c}\right)^{2}+1\right)}+\int \frac{2 b x\left(2 a d x^{2} \mathrm{e}^{d x^{2}+c}+b\right)}{d\left(\left(\mathrm{e}^{d x^{2}+c}\right)^{2}+1\right)} \mathrm{d} x
$$

Problem 6: Unable to integrate problem.

$$
\int \frac{x^{5}}{a+b \operatorname{sech}\left(d x^{2}+c\right)} \mathrm{d} x
$$

Optimal(type 4, 313 leaves, 13 steps):

$$
\begin{aligned}
\frac{x^{6}}{6 a}- & \frac{b x^{4} \ln \left(1+\frac{a \mathrm{e}^{d x^{2}+c}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{2 a d \sqrt{-a^{2}+b^{2}}}+\frac{b x^{4} \ln \left(1+\frac{a \mathrm{e}^{d x^{2}+c}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{2 a d \sqrt{-a^{2}+b^{2}}}-\frac{b x^{2} \operatorname{polylog}\left(2,-\frac{a \mathrm{e}^{d x^{2}+c}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a d^{2} \sqrt{-a^{2}+b^{2}}}+\frac{b x^{2} \operatorname{polylog}\left(2,-\frac{a \mathrm{e}^{d x^{2}+c}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a d^{2} \sqrt{-a^{2}+b^{2}}} \\
& +\frac{b \operatorname{polylog}\left(3,-\frac{a \mathrm{e}^{d x^{2}+c}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a d^{3} \sqrt{-a^{2}+b^{2}}}-\frac{b \operatorname{polylog}\left(3,-\frac{a \mathrm{e}^{d x^{2}+c}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a d^{3} \sqrt{-a^{2}+b^{2}}}
\end{aligned}
$$

Result(type 8, 55 leaves):

$$
\frac{x^{6}}{6 a}+\int-\frac{2 \mathrm{e}^{d x^{2}+c} b x^{5}}{a\left(a\left(\mathrm{e}^{d x^{2}+c}\right)^{2}+2 b \mathrm{e}^{d x^{2}+c}+a\right)} \mathrm{d} x
$$

Problem 8: Unable to integrate problem.

$$
\int \frac{x^{3}}{a+b \operatorname{sech}\left(d x^{2}+c\right)} \mathrm{d} x
$$

Optimal(type 4, 211 leaves, 11 steps):

$$
\begin{aligned}
& \quad \frac{x^{4}}{4 a}-\frac{b x^{2} \ln \left(1+\frac{a \mathrm{e}^{d x^{2}+c}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{2 a d \sqrt{-a^{2}+b^{2}}}+\frac{b x^{2} \ln \left(1+\frac{a \mathrm{e}^{d x^{2}+c}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{2 a d \sqrt{-a^{2}+b^{2}}}-\frac{b \operatorname{polylog}\left(2,-\frac{a \mathrm{e}^{d x^{2}+c}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{2 a d^{2} \sqrt{-a^{2}+b^{2}}}+\frac{b \operatorname{polylog}\left(2,-\frac{a \mathrm{e}^{d x^{2}+c}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{2 a d^{2} \sqrt{-a^{2}+b^{2}}} \\
& \text { Result(type 8, 55 leaves): }
\end{aligned}
$$

$$
\frac{x^{4}}{4 a}+\int-\frac{2 b x^{3} \mathrm{e}^{d x^{2}+c}}{a\left(a\left(\mathrm{e}^{d x^{2}+c}\right)^{2}+2 b \mathrm{e}^{d x^{2}+c}+a\right)} \mathrm{d} x
$$

Problem 10: Unable to integrate problem.

$$
\int \frac{x^{5}}{\left(a+b \operatorname{sech}\left(d x^{2}+c\right)\right)^{2}} \mathrm{~d} x
$$

Optimal(type 4, 912 leaves, 31 steps):

$$
\begin{aligned}
& \frac{b^{2} x^{4}}{2 a^{2}\left(a^{2}-b^{2}\right) d}+\frac{x^{6}}{6 a^{2}}-\frac{b^{2} x^{2} \ln \left(1+\frac{a \mathrm{e}^{d x^{2}+c}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}-b^{2}\right) d^{2}}+\frac{b^{3} x^{4} \ln \left(1+\frac{a \mathrm{e}^{d x^{2}+c}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{2 a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d}-\frac{b^{2} x^{2} \ln \left(1+\frac{a \mathrm{e}^{d x^{2}+c}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}-b^{2}\right) d^{2}} \\
& -\frac{b^{3} x^{4} \ln \left(1+\frac{a \mathrm{e}^{d x^{2}+c}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{2 a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d}-\frac{b^{2} \operatorname{poly} \log \left(2,-\frac{a \mathrm{e}^{d x^{2}+c}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}-b^{2}\right) d^{3}}+\frac{b^{3} x^{2} \operatorname{polylog}\left(2,-\frac{a \mathrm{e}^{d x^{2}+c}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d^{2}}-\frac{b^{2} \operatorname{polylog}\left(2,-\frac{a \mathrm{e}^{d x^{2}+c}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}-b^{2}\right) d^{3}} \\
& -\frac{b^{3} x^{2} \operatorname{polylog}\left(2,-\frac{a \mathrm{e}^{d x^{2}+c}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d^{2}}-\frac{b^{3} \operatorname{polylog}\left(3,-\frac{a \mathrm{e}^{d x^{2}+c}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d^{3}}+\frac{b^{3} \operatorname{polylog}\left(3,-\frac{a \mathrm{e}^{d x^{2}+c}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d^{3}} \\
& +\frac{b^{2} x^{4} \sinh \left(d x^{2}+c\right)}{2 a\left(a^{2}-b^{2}\right) d\left(b+a \cosh \left(d x^{2}+c\right)\right)}-\frac{b x^{4} \ln \left(1+\frac{a \mathrm{e}^{d x^{2}+c}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2} d \sqrt{-a^{2}+b^{2}}}+\frac{b x^{4} \ln \left(1+\frac{a \mathrm{e}^{d x^{2}+c}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2} d \sqrt{-a^{2}+b^{2}}}-\frac{2 b x^{2} \operatorname{polylog}\left(2,-\frac{a \mathrm{e}^{d x^{2}+c}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2} d^{2} \sqrt{-a^{2}+b^{2}}} \\
& +\frac{2 b x^{2} \text { polylog }\left(2,-\frac{a \mathrm{e}^{d x^{2}+c}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2} d^{2} \sqrt{-a^{2}+b^{2}}}+\frac{2 b \operatorname{polylog}\left(3,-\frac{a \mathrm{e}^{d x^{2}+c}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2} d^{3} \sqrt{-a^{2}+b^{2}}}-\frac{2 b \operatorname{polylog}\left(3,-\frac{a \mathrm{e}^{d x^{2}+c}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2} d^{3} \sqrt{-a^{2}+b^{2}}}
\end{aligned}
$$

Result(type 8, 177 leaves):

$$
\frac{x^{6}}{6 a^{2}}-\frac{b^{2} x^{4}\left(b \mathrm{e}^{d x^{2}+c}+a\right)}{a^{2}\left(a^{2}-b^{2}\right) d\left(a\left(\mathrm{e}^{d x^{2}+c}\right)^{2}+2 b \mathrm{e}^{d x^{2}+c}+a\right)}+\int-\frac{2 b x^{3}\left(2 a^{2} d x^{2} \mathrm{e}^{d x^{2}+c}-b^{2} d x^{2} \mathrm{e}^{d x^{2}+c}-2 b^{2} \mathrm{e}^{d x^{2}+c}-2 a b\right)}{a^{2}\left(a^{2}-b^{2}\right) d\left(a\left(\mathrm{e}^{d x^{2}+c}\right)^{2}+2 b \mathrm{e}^{d x^{2}+c}+a\right)} \mathrm{d} x
$$

Problem 13: Unable to integrate problem.

$$
\int x(a+b \operatorname{sech}(c+d \sqrt{x}))^{2} \mathrm{~d} x
$$

Optimal(type 4, 264 leaves, 18 steps):
$\frac{2 b^{2} x^{3} / 2}{d}+\frac{a^{2} x^{2}}{2}+\frac{8 a b x^{3 / 2} \arctan \left(\mathrm{e}^{c+d \sqrt{x}}\right)}{d}-\frac{6 b^{2} x \ln \left(1+\mathrm{e}^{2 c+2 d \sqrt{x}}\right)}{d^{2}}-\frac{12 \mathrm{I} a b x \operatorname{poly} \log \left(2,-\mathrm{I} \mathrm{e}^{c+d \sqrt{x}}\right)}{d^{2}}+\frac{12 \mathrm{I} a b x \operatorname{poly\operatorname {log}(2,\mathrm {I}\mathrm {e}^{c+d\sqrt {x}})}}{d^{2}}$

$$
+\frac{3 b^{2} \text { polylog }\left(3,-\mathrm{e}^{2 c+2 d \sqrt{x}}\right)}{d^{4}}-\frac{24 \mathrm{I} a b \text { polylog }\left(4,-\mathrm{I} \mathrm{e}^{c+d \sqrt{x}}\right)}{d^{4}}+\frac{24 \mathrm{I} a b \operatorname{polylog}\left(4, \mathrm{I} \mathrm{e}^{c+d \sqrt{x}}\right)}{d^{4}}-\frac{6 b^{2} \operatorname{polylog}\left(2,-\mathrm{e}^{2} c+2 d \sqrt{x}\right) \sqrt{x}}{d^{3}}
$$

$$
+\frac{24 \mathrm{I} a b \text { polylog }\left(3,-\mathrm{Ie} \mathrm{e}^{c+d \sqrt{x}}\right) \sqrt{x}}{d^{3}}-\frac{24 \mathrm{I} a b \text { polylog }\left(3, \mathrm{I} \mathrm{e}^{c+d \sqrt{x}}\right) \sqrt{x}}{d^{3}}+\frac{2 b^{2} x^{3} / 2}{\tanh (c+d \sqrt{x})} \underset{d}{d}
$$

Result(type 8, 18 leaves):

$$
\int x(a+b \operatorname{sech}(c+d \sqrt{x}))^{2} \mathrm{~d} x
$$

Problem 16: Unable to integrate problem.

$$
\int \frac{x^{3}}{(a+b \operatorname{sech}(c+d \sqrt{x}))^{2}} \mathrm{~d} x
$$

Optimal(type 4, 2503 leaves, 61 steps):

$$
\frac{10080 b^{2} \text { polylog }\left(7,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}-b^{2}\right) d^{8}}+\frac{10080 b^{2} \text { polylog }\left(7,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}-b^{2}\right) d^{8}}+\frac{10080 b^{3} \operatorname{polylog}\left(8,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d^{8}}
$$

$$
-\frac{10080 b^{3} \text { polylog }\left(8,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d^{8}}-\frac{20160 b \text { polylog }\left(8,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2} d^{8} \sqrt{-a^{2}+b^{2}}}+\frac{20160 b \text { polylog }\left(8,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2} d^{8} \sqrt{-a^{2}+b^{2}}}+\frac{2 b^{2} x^{7} / 2}{a^{2}\left(a^{2}-b^{2}\right) d}
$$

$$
+\frac{2 b^{3} x^{7} / 2 \ln \left(1+\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d}-\frac{14 b^{2} x^{3} \ln \left(1+\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}-b^{2}\right) d^{2}}-\frac{2 b^{3} x^{7 / 2} \ln \left(1+\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d}
$$

$$
-\frac{84 b^{2} x^{5 / 2} \operatorname{polylog}\left(2,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}-b^{2}\right) d^{3}}+\frac{14 b^{3} x^{3} \operatorname{polylog}\left(2,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d^{2}}-\frac{84 b^{2} x^{5 / 2} \operatorname{polylog}\left(2,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}-b^{2}\right) d^{3}}
$$

$$
-\frac{14 b^{3} x^{3} \text { polylog }\left(2,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d^{2}}+\frac{420 b^{2} x^{2} \operatorname{polylog}\left(3,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}-b^{2}\right) d^{4}}-\frac{84 b^{3} x^{5 / 2} \operatorname{polylog}\left(3,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d^{3}}
$$

$+\frac{420 b^{2} x^{2} \text { polylog }\left(3,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}-b^{2}\right) d^{4}}+\frac{84 b^{3} x^{5} / 2 \operatorname{polylog}\left(3,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d^{3}}-\frac{1680 b^{2} x^{3} / 2 \operatorname{polylog}\left(4,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}-b^{2}\right) d^{5}}$
$+\frac{420 b^{3} x^{2} \operatorname{polylog}\left(4,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d^{4}}$
$\frac{1680 b^{2} x^{3 / 2} \text { polylog }\left(4,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}-b^{2}\right) d^{5}}-$
$\frac{420 b^{3} x^{2} \text { polylog }\left(4,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d^{4}}$
$+\frac{5040 b^{2} x \text { polylog }\left(5,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}-b^{2}\right) d^{6}}$
$\frac{1680 b^{3} x^{3 / 2} \operatorname{polylog}\left(5,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d^{5}}+$
$\frac{5040 b^{2} x \text { polylog }\left(5,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}-b^{2}\right) d^{6}}$
$+\frac{1680 b^{3} x^{3 / 2} \text { polylog }\left(5,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d^{5}}$
$+\frac{5040 b^{3} x \text { polylog }\left(6,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d^{6}}-$
$\frac{5040 b^{3} x \text { polylog }\left(6,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d^{6}}$
$-\frac{4 b x^{7 / 2} \ln \left(1+\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2} d \sqrt{-a^{2}+b^{2}}}+\frac{4 b x^{7 / 2} \ln \left(1+\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2} d \sqrt{-a^{2}+b^{2}}}-\frac{28 b x^{3} \operatorname{polylog}\left(2,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2} d^{2} \sqrt{-a^{2}+b^{2}}}$
$+\frac{28 b x^{3} \text { polylog }\left(2,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2} d^{2} \sqrt{-a^{2}+b^{2}}}+\frac{168 b x^{5 / 2} \operatorname{polylog}\left(3,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2} d^{3} \sqrt{-a^{2}+b^{2}}}-\frac{168 b x^{5 / 2} \operatorname{polylog}\left(3,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2} d^{3} \sqrt{-a^{2}+b^{2}}}$
$\left.-\frac{840 b x^{2} \text { polylog }\left(4,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{840 b x^{2} \text { polylog }\left(4,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{-a^{2}+b^{2}}}\right)}+\frac{3360 b x^{3 / 2} \operatorname{polylog}\left(5,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{\left(\sqrt{a^{2}}\right.}\right)$
$a^{2} d^{4} \sqrt{-a^{2}+b^{2}}+\cdots+\frac{a^{2} d^{4} \sqrt{-a^{2}+b^{2}}}{a^{2} d^{5} \sqrt{-a^{2}+b^{2}}}$
$-\frac{3360 b x^{3 / 2} \text { polylog }\left(5,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2} d^{5} \sqrt{-a^{2}+b^{2}}}-\frac{10080 b x \operatorname{polylog}\left(6,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2} d^{6} \sqrt{-a^{2}+b^{2}}}+\frac{10080 b x \operatorname{poly} \log \left(6,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2} d^{6} \sqrt{-a^{2}+b^{2}}}$
$-\frac{10080 b^{2} \text { polylog }\left(6,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{-a^{2}+b^{2}}}\right) \sqrt{x}}{a^{2}\left(a^{2}-b^{2}\right) d^{7}}-\frac{10080 b^{2} \operatorname{polylog}\left(6,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{-a^{2}+b^{2}}}\right) \sqrt{x}}{a^{2}\left(a^{2}-b^{2}\right) d^{7}}-\frac{10080 b^{3} \operatorname{polylog}\left(7,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{-a^{2}+b^{2}}}\right) \sqrt{x}}{a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d^{7}}$

$$
+\frac{10080 b^{3} \text { polylog }\left(7,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{-a^{2}+b^{2}}}\right) \sqrt{x}}{a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d^{7}}+\frac{20160 b \text { polylog }\left(7,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{-a^{2}+b^{2}}}\right) \sqrt{x}}{a^{2} d^{7} \sqrt{-a^{2}+b^{2}}}-\frac{20160 b \operatorname{polylog}\left(7,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{-a^{2}+b^{2}}}\right) \sqrt{x}}{a^{2} d^{7} \sqrt{-a^{2}+b^{2}}}
$$

$$
-\frac{14 b^{2} x^{3} \ln \left(1+\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}-b^{2}\right) d^{2}}+\frac{x^{4}}{4 a^{2}}+\frac{2 b^{2} x^{7 / 2} \sinh (c+d \sqrt{x})}{a\left(a^{2}-b^{2}\right) d(b+a \cosh (c+d \sqrt{x}))}
$$

Result(type 8, 20 leaves):

$$
\int \frac{x^{3}}{(a+b \operatorname{sech}(c+d \sqrt{x}))^{2}} \mathrm{~d} x
$$

Problem 17: Unable to integrate problem.

$$
\int \frac{x}{(a+b \operatorname{sech}(c+d \sqrt{x}))^{2}} \mathrm{~d} x
$$

Optimal(type 4, 1223 leaves, 37 steps):

$$
\frac{12 b^{2} \text { polylog }\left(3,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}-b^{2}\right) d^{4}}+\frac{12 b^{2} \text { polylog }\left(3,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}-b^{2}\right) d^{4}}+\frac{12 b^{3} \operatorname{poly} \log \left(4,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d^{4}}
$$

$$
+\frac{6 b^{3} x \operatorname{polylog}\left(2,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d^{2}}-\frac{6 b^{3} x \operatorname{polylog}\left(2,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d^{2}}-\frac{4 b x^{3 / 2} \ln \left(1+\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2} d \sqrt{-a^{2}+b^{2}}}
$$

$$
+\frac{4 b x^{3 / 2} \ln \left(1+\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2} d \sqrt{-a^{2}+b^{2}}}-\frac{12 b x \operatorname{polylog}\left(2,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2} d^{2} \sqrt{-a^{2}+b^{2}}}+\frac{12 b x \operatorname{poly} \log \left(2,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2} d^{2} \sqrt{-a^{2}+b^{2}}}
$$

$$
\begin{aligned}
& -\frac{12 b^{2} \operatorname{poly} \log \left(2,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{-a^{2}+b^{2}}}\right) \sqrt{x}}{a^{2}\left(a^{2}-b^{2}\right) d^{3}}-\frac{12 b^{2} \operatorname{polylog}\left(2,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{-a^{2}+b^{2}}}\right) \sqrt{x}}{a^{2}\left(a^{2}-b^{2}\right) d^{3}}-\frac{12 b^{3} \operatorname{polylog}\left(3,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{-a^{2}+b^{2}}}\right) \sqrt{x}}{a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d^{3}} \\
& +\frac{12 b^{3} \operatorname{polylog}\left(3,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{-a^{2}+b^{2}}}\right) \sqrt{x}}{a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d^{3}}+\frac{24 b \operatorname{polylog}\left(3,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{-a^{2}+b^{2}}}\right) \sqrt{x}}{a^{2} d^{3} \sqrt{-a^{2}+b^{2}}}-\frac{24 b \operatorname{polylog}\left(3,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{-a^{2}+b^{2}}}\right) \sqrt{x}}{a^{2}}+\frac{x^{2}}{2 a^{2}} \\
& +\frac{2 b^{2} x^{3 / 2} \sinh (c+d \sqrt{x})}{a\left(a^{2}-b^{2}\right) d(b+a \cosh (c+d \sqrt{x}))}
\end{aligned}
$$

Result(type 8, 18 leaves):

$$
\int \frac{x}{(a+b \operatorname{sech}(c+d \sqrt{x}))^{2}} \mathrm{~d} x
$$

Problem 24: Result more than twice size of optimal antiderivative.

$$
\int \frac{(e x)^{-1+2 n}}{a+b \operatorname{sech}\left(c+d x^{n}\right)} \mathrm{d} x
$$

Optimal(type 4, 289 leaves, 12 steps):

$$
\begin{aligned}
& \frac{(e x)^{2 n}}{2 a e n}-\frac{b(e x)^{2 n} \ln \left(1+\frac{a \mathrm{e}^{c+d x^{n}}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a d e n x^{n} \sqrt{-a^{2}+b^{2}}}+\frac{b(e x)^{2 n} \ln \left(1+\frac{a \mathrm{e}^{c+d x^{n}}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a d e n x^{n} \sqrt{-a^{2}+b^{2}}}-\frac{b(e x)^{2 n} \operatorname{polylog}\left(2,-\frac{a \mathrm{e}^{c+d x^{n}}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a d^{2} e n x^{2 n} \sqrt{-a^{2}+b^{2}}} \\
& \quad+\frac{b(e x)^{2 n} \operatorname{polylog}\left(2,-\frac{a \mathrm{e}^{c+d x^{n}}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a d^{2} e n x^{2 n} \sqrt{-a^{2}+b^{2}}}
\end{aligned}
$$

Result(type 4, 586 leaves):
$\underline{(-1+2 n)\left(-\mathrm{I} \pi \operatorname{csgn}(\mathrm{I} e x)^{3}+\mathrm{I} \pi \operatorname{csgn}(\mathrm{I} e x)^{2} \operatorname{csgn}(\mathrm{I} e)+\mathrm{I} \pi \operatorname{csgn}(\mathrm{I} e x)^{2} \operatorname{csgn}(\mathrm{I} x)-\mathrm{I} \pi \operatorname{csgn}(\mathrm{I} e x) \operatorname{csgn}(\mathrm{I} e) \operatorname{csgn}(\mathrm{I} x)+2 \ln (e)+2 \ln (x)\right)}$
x e
$2 a n$

$$
-\frac{1}{a e n d^{2}}\left(2 b \mathrm{e}^{-\mathrm{I} \pi n \operatorname{csgn}(\mathrm{I} e) \operatorname{csgn}(\mathrm{I} x) \operatorname{csgn}(\mathrm{I} e x)} \mathrm{e}^{\mathrm{I} \pi n \operatorname{csgn}(\mathrm{I} e) \operatorname{csgn}(\mathrm{I} e x)^{2}} \mathrm{e}^{\mathrm{I} \pi n \operatorname{csgn}(\mathrm{I} x) \operatorname{csgn}(\mathrm{I} e x)^{2}} \mathrm{e}^{-\mathrm{I} \pi n \operatorname{csgn}(\mathrm{I} e x)^{3}} \mathrm{e}^{\frac{\mathrm{I}}{2} \pi \operatorname{csgn}(\mathrm{I} e) \operatorname{csgn}(\mathrm{I} x) \operatorname{csgn}(\mathrm{I} e x)} \mathrm{e}^{-\frac{\mathrm{I}}{2} \pi \operatorname{csgn}(\mathrm{I} e) \operatorname{csgn}(\mathrm{I} e x)^{2}}\right.
$$

$$
\begin{aligned}
& \mathrm{e}^{-\frac{\mathrm{I}}{2} \pi \operatorname{csgn}(\mathrm{I} x) \operatorname{csgn}(\mathrm{I} e x)^{2}} \mathrm{e}^{\frac{\mathrm{I}}{2} \pi \operatorname{csgn}(\mathrm{I} e x)^{3}}\left(e^{n}\right)^{2} \mathrm{e}^{c}\left(\frac{d x^{n}\left(\ln \left(\frac{a \mathrm{e}^{2 c+d x^{n}}+\mathrm{e}^{c} b-\sqrt{\mathrm{e}^{2 c} b^{2}-a^{2} \mathrm{e}^{2 c}}}{\mathrm{e}^{c} b-\sqrt{\mathrm{e}^{2 c} b^{2}-a^{2} \mathrm{e}^{2 c}}}\right)-\ln \left(\frac{a \mathrm{e}^{2 c+d x^{n}}+\mathrm{e}^{c} b+\sqrt{\mathrm{e}^{2 c} b^{2}-a^{2} \mathrm{e}^{2 c}}}{\mathrm{e}^{c} b+\sqrt{\mathrm{e}^{2 c} b^{2}-a^{2} \mathrm{e}^{2 c}}}\right)\right.}{2 \sqrt{\mathrm{e}^{2 c} b^{2}-a^{2} \mathrm{e}^{2 c}}}\right) \\
& \left.+\frac{\operatorname{dilog}\left(\frac{a \mathrm{e}^{2 c+d x^{n}}+\mathrm{e}^{c} b-\sqrt{\mathrm{e}^{2 c} b^{2}-a^{2} \mathrm{e}^{2 c}}}{\mathrm{e}^{c} b-\sqrt{\mathrm{e}^{2 c} b^{2}-a^{2} \mathrm{e}^{2 c}}}\right)-\operatorname{dilog}\left(\frac{a \mathrm{e}^{2 c+d x^{n}}+\mathrm{e}^{c} b+\sqrt{\mathrm{e}^{2 c} b^{2}-a^{2} \mathrm{e}^{2 c}}}{\mathrm{e}^{c} b+\sqrt{\mathrm{e}^{2 c} b^{2}-a^{2} \mathrm{e}^{2 c}}}\right)}{2 \sqrt{\mathrm{e}^{2 c} b^{2}-a^{2} \mathrm{e}^{2 c}}}\right)
\end{aligned}
$$

Problem 25: Unable to integrate problem.

$$
\int \frac{(e x)^{-1+3 n}}{a+b \operatorname{sech}\left(c+d x^{n}\right)} \mathrm{d} x
$$

Optimal(type 4, 428 leaves, 14 steps):

Result(type 8, 159 leaves):

Test results for the 52 problems in "6.5.3 Hyperbolic secant functions.txt"
Problem 5: Unable to integrate problem.

$$
\int(b \operatorname{sech}(d x+c))^{7 / 2} \mathrm{~d} x
$$

Optimal(type 4, 114 leaves, 4 steps):

$$
\frac{2 b(b \operatorname{sech}(d x+c))^{5 / 2} \sinh (d x+c)}{5 d}+\frac{6 \mathrm{I} b^{4} \sqrt{\cosh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}} \mathrm{EllipticE}\left(I \sinh \left(\frac{d x}{2}+\frac{c}{2}\right), \sqrt{2}\right)}{5 \cosh \left(\frac{d x}{2}+\frac{c}{2}\right) d \sqrt{\cosh (d x+c)} \sqrt{b \operatorname{sech}(d x+c)}}+\frac{6 b^{3} \sinh (d x+c) \sqrt{b \operatorname{sech}(d x+c)}}{5 d}
$$

Result (type 8, 12 leaves):

$$
\int(b \operatorname{sech}(d x+c))^{7 / 2} \mathrm{~d} x
$$

Problem 6: Unable to integrate problem.

$$
\int(b \operatorname{sech}(d x+c))^{5 / 2} \mathrm{~d} x
$$

Optimal(type 4, 90 leaves, 3 steps):

$$
\frac{2 b(b \operatorname{sech}(d x+c))^{3 / 2} \sinh (d x+c)}{3 d}-\frac{2 \mathrm{I} b^{2} \sqrt{\cosh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}} \operatorname{EllipticF}\left(\mathrm{I} \sinh \left(\frac{d x}{2}+\frac{c}{2}\right), \sqrt{2}\right) \sqrt{\cosh (d x+c)} \sqrt{b \operatorname{sech}(d x+c)}}{3 \cosh \left(\frac{d x}{2}+\frac{c}{2}\right) d}
$$

Result(type 8, 12 leaves):

$$
\int(b \operatorname{sech}(d x+c))^{5 / 2} \mathrm{~d} x
$$

Problem 7: Unable to integrate problem.

$$
\int(b \operatorname{sech}(d x+c))^{3 / 2} \mathrm{~d} x
$$

Optimal(type 4, 90 leaves, 3 steps):

$$
\frac{2 \mathrm{I} b^{2} \sqrt{\cosh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}} \text { EllipticE }\left(\mathrm{I} \sinh \left(\frac{d x}{2}+\frac{c}{2}\right), \sqrt{2}\right)}{\cosh \left(\frac{d x}{2}+\frac{c}{2}\right) d \sqrt{\cosh (d x+c)} \sqrt{b \operatorname{sech}(d x+c)}}+\frac{2 b \sinh (d x+c) \sqrt{b \operatorname{sech}(d x+c)}}{d}
$$

Result(type 8, 12 leaves):

$$
\int(b \operatorname{sech}(d x+c))^{3 / 2} \mathrm{~d} x
$$

Problem 8: Unable to integrate problem.

$$
\int \sqrt{b \operatorname{sech}(d x+c)} \mathrm{d} x
$$

Optimal(type 4, 64 leaves, 2 steps):

$$
\frac{-2 \mathrm{I} \sqrt{\cosh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}} \operatorname{EllipticF}\left(\mathrm{I} \sinh \left(\frac{d x}{2}+\frac{c}{2}\right), \sqrt{2}\right) \sqrt{\cosh (d x+c)} \sqrt{b \operatorname{sech}(d x+c)}}{\cosh \left(\frac{d x}{2}+\frac{c}{2}\right) d}
$$

Result(type 8, 12 leaves):

$$
\int \sqrt{b \operatorname{sech}(d x+c)} \mathrm{d} x
$$

Problem 9: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\sqrt{b \operatorname{sech}(d x+c)}} \mathrm{d} x
$$

Optimal(type 4, 64 leaves, 2 steps):

$$
\frac{-2 \mathrm{I} \sqrt{\cosh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}} \operatorname{EllipticE}\left(\mathrm{I} \sinh \left(\frac{d x}{2}+\frac{c}{2}\right), \sqrt{2}\right)}{\cosh \left(\frac{d x}{2}+\frac{c}{2}\right) d \sqrt{\cosh (d x+c)} \sqrt{b \operatorname{sech}(d x+c)}}
$$

Result(type 4, 243 leaves):

Problem 10: Unable to integrate problem.

$$
\int(b \operatorname{sech}(d x+c))^{n} \mathrm{~d} x
$$

Optimal(type 5, 65 leaves, 2 steps):

$$
-\frac{b \text { hypergeom }\left(\left[\frac{1}{2}, \frac{1}{2}-\frac{n}{2}\right],\left[\frac{3}{2}-\frac{n}{2}\right], \cosh (d x+c)^{2}\right)(b \operatorname{sech}(d x+c))^{-1+n} \sinh (d x+c)}{d(1-n) \sqrt{-\sinh (d x+c)^{2}}}
$$

Result(type 8, 12 leaves):

$$
\int(b \operatorname{sech}(d x+c))^{n} \mathrm{~d} x
$$

Problem 11: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\left(\operatorname{sech}(b x+a)^{2}\right)^{3 / 2}} d x
$$

Optimal(type 3, 43 leaves, 3 steps):

$$
\frac{\tanh (b x+a)}{3 b\left(\operatorname{sech}(b x+a)^{2}\right)^{3 / 2}}+\frac{2 \tanh (b x+a)}{3 b \sqrt{\operatorname{sech}(b x+a)^{2}}}
$$

Result(type 3, 200 leaves):

Problem 12: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\sqrt{a \operatorname{sech}(x)^{2}}} \mathrm{~d} x
$$

Optimal(type 3, 11 leaves, 2 steps):

$$
\frac{\tanh (x)}{\sqrt{a \operatorname{sech}(x)^{2}}}
$$

Result(type 3, 57 leaves):

$$
\frac{\mathrm{e}^{2 x}}{2 \sqrt{\frac{a \mathrm{e}^{2 x}}{\left(\mathrm{e}^{2 x}+1\right)^{2}}}\left(\mathrm{e}^{2 x}+1\right)}-\frac{1}{2 \sqrt{\frac{a \mathrm{e}^{2 x}}{\left(\mathrm{e}^{2 x}+1\right)^{2}}}\left(\mathrm{e}^{2 x}+1\right)}
$$

Problem 13: Unable to integrate problem.

$$
\int\left(a \operatorname{sech}(x)^{3}\right)^{5 / 2} \mathrm{~d} x
$$

Optimal(type 4, 114 leaves, 7 steps):
$\frac{154 \mathrm{I} a^{2} \cosh (x)^{3 / 2} \sqrt{\cosh \left(\frac{x}{2}\right)^{2}} \text { EllipticE }\left(\mathrm{I} \sinh \left(\frac{x}{2}\right), \sqrt{2}\right) \sqrt{a \operatorname{sech}(x)^{3}}}{195 \cosh \left(\frac{x}{2}\right)}+\frac{154 a^{2} \cosh (x) \sinh (x) \sqrt{a \operatorname{sech}(x)^{3}}}{195}+\frac{154 a^{2} \sqrt{a \operatorname{sech}(x)^{3}} \tanh (x)}{585}$

$$
+\frac{22 a^{2} \operatorname{sech}(x)^{2} \sqrt{a \operatorname{sech}(x)^{3}} \tanh (x)}{117}+\frac{2 a^{2} \operatorname{sech}(x)^{4} \sqrt{a \operatorname{sech}(x)^{3}} \tanh (x)}{13}
$$

Result(type 8, 10 leaves):

$$
\int\left(a \operatorname{sech}(x)^{3}\right)^{5 / 2} \mathrm{~d} x
$$

Problem 14: Unable to integrate problem.

$$
\int \sqrt{a \operatorname{sech}(x)^{3}} \mathrm{~d} x
$$

Optimal(type 4, 55 leaves, 4 steps):

$$
\frac{2 \mathrm{I} \cosh (x)^{3 / 2} \sqrt{\cosh \left(\frac{x}{2}\right)^{2}} \text { EllipticE }\left(\mathrm{I} \sinh \left(\frac{x}{2}\right), \sqrt{2}\right) \sqrt{a \operatorname{sech}(x)^{3}}}{\cosh \left(\frac{x}{2}\right)}+2 \cosh (x) \sinh (x) \sqrt{a \operatorname{sech}(x)^{3}}
$$

Result(type 8, 10 leaves):

$$
\int \sqrt{a \operatorname{sech}(x)^{3}} \mathrm{~d} x
$$

Problem 17: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\sqrt{a \operatorname{sech}(x)^{4}}} \mathrm{~d} x
$$

Optimal(type 3, 28 leaves, 3 steps):

$$
\frac{x \operatorname{sech}(x)^{2}}{2 \sqrt{a \operatorname{sech}(x)^{4}}}+\frac{\tanh (x)}{2 \sqrt{a \operatorname{sech}(x)^{4}}}
$$

Result(type 3, 88 leaves):

$$
\frac{\mathrm{e}^{2 x} x}{2 \sqrt{\frac{a \mathrm{e}^{4 x}}{\left(\mathrm{e}^{2 x}+1\right)^{4}}}\left(\mathrm{e}^{2 x}+1\right)^{2}}+\frac{\mathrm{e}^{4 x}}{8 \sqrt{\frac{a \mathrm{e}^{4 x}}{\left(\mathrm{e}^{2 x}+1\right)^{4}}}\left(\mathrm{e}^{2 x}+1\right)^{2}}-\frac{1}{8 \sqrt{\frac{a \mathrm{e}^{4 x}}{\left(\mathrm{e}^{2 x}+1\right)^{4}}}\left(\mathrm{e}^{2 x}+1\right)^{2}}
$$

Problem 23: Result more than twice size of optimal antiderivative.

$$
\int \frac{\cosh (x)^{2}}{a+a \operatorname{sech}(x)} \mathrm{d} x
$$

Optimal(type 3, 37 leaves, 5 steps):

$$
\frac{3 x}{2 a}-\frac{2 \sinh (x)}{a}+\frac{3 \cosh (x) \sinh (x)}{2 a}-\frac{\cosh (x) \sinh (x)}{a+a \operatorname{sech}(x)}
$$

Result(type 3, 86 leaves):

$$
\begin{aligned}
& -\frac{\tanh \left(\frac{x}{2}\right)}{a}-\frac{1}{2 a\left(\tanh \left(\frac{x}{2}\right)+1\right)^{2}}+\frac{3}{2 a\left(\tanh \left(\frac{x}{2}\right)+1\right)}+\frac{3 \ln \left(\tanh \left(\frac{x}{2}\right)+1\right)}{2 a}+\frac{1}{2 a\left(\tanh \left(\frac{x}{2}\right)-1\right)^{2}}+\frac{3}{2 a\left(\tanh \left(\frac{x}{2}\right)-1\right)} \\
& \quad-\frac{3 \ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{2 a}
\end{aligned}
$$

Problem 24: Unable to integrate problem.

$$
\int \sqrt{a+a \operatorname{sech}(d x+c)} \mathrm{d} x
$$

Optimal(type 3, 31 leaves, 2 steps):

$$
\frac{2 \operatorname{arctanh}\left(\frac{\sqrt{a} \tanh (d x+c)}{\sqrt{a+a \operatorname{sech}(d x+c)}}\right) \sqrt{a}}{d}
$$

Result(type 8, 14 leaves):

$$
\int \sqrt{a+a \operatorname{sech}(d x+c)} \mathrm{d} x
$$

Problem 25: Unable to integrate problem.

$$
\int \frac{1}{\sqrt{a+a \operatorname{sech}(d x+c)}} d x
$$

Optimal(type 3, 70 leaves, 5 steps):

$$
\frac{2 \operatorname{arctanh}\left(\frac{\sqrt{a} \tanh (d x+c)}{\sqrt{a+a \operatorname{sech}(d x+c)}}\right)}{d \sqrt{a}}-\frac{\operatorname{arctanh}\left(\frac{\sqrt{a} \tanh (d x+c) \sqrt{2}}{2 \sqrt{a+a \operatorname{sech}(d x+c)}}\right) \sqrt{2}}{d \sqrt{a}}
$$

Result(type 8, 14 leaves):

$$
\int \frac{1}{\sqrt{a+a \operatorname{sech}(d x+c)}} \mathrm{d} x
$$

Problem 27: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{(a+b \operatorname{sech}(d x+c))^{2}} \mathrm{~d} x
$$

Optimal (type 3, 100 leaves, 5 steps):

$$
\frac{x}{a^{2}}-\frac{2 b\left(2 a^{2}-b^{2}\right) \arctan \left(\frac{\sqrt{a-b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{a+b}}\right)}{a^{2}(a-b)^{3 / 2}(a+b)^{3 / 2} d}+\frac{b^{2} \tanh (d x+c)}{a\left(a^{2}-b^{2}\right) d(a+b \operatorname{sech}(d x+c))}
$$

Result(type 3, 220 leaves):
$\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)}{d a^{2}}-\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)}{d a^{2}}+\frac{2 b^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{d a\left(a^{2}-b^{2}\right)\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)}$

$$
-\frac{4 b \arctan \left(\frac{(a-b) \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{(a+b)(a-b)}}\right)}{d(a+b)(a-b) \sqrt{(a+b)(a-b)}}+\frac{2 b^{3} \arctan \left(\frac{(a-b) \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{(a+b)(a-b)}}\right)}{d a^{2}(a+b)(a-b) \sqrt{(a+b)(a-b)}}
$$

Problem 31: Result more than twice size of optimal antiderivative.

$$
\int \frac{\tanh (x)^{7}}{a+b \operatorname{sech}(x)} \mathrm{d} x
$$

Optimal(type 3, 113 leaves, 3 steps):
$\frac{\ln (\cosh (x))}{a}-\frac{\left(a^{2}-b^{2}\right)^{3} \ln (a+b \operatorname{sech}(x))}{a b^{6}}+\frac{\left(a^{4}-3 a^{2} b^{2}+3 b^{4}\right) \operatorname{sech}(x)}{b^{5}}-\frac{a\left(a^{2}-3 b^{2}\right) \operatorname{sech}(x)^{2}}{2 b^{4}}+\frac{\left(a^{2}-3 b^{2}\right) \operatorname{sech}(x)^{3}}{3 b^{3}}-\frac{a \operatorname{sech}(x)^{4}}{4 b^{2}}$

$$
+\frac{\operatorname{sech}(x)^{5}}{5 b}
$$

Result(type 3, 414 leaves):

$$
\begin{gathered}
\frac{32}{5 b\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{5}}+\frac{8 a^{2}}{3 b^{3}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{3}}+\frac{8 a}{b^{2}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{3}}+\frac{8}{b\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{3}}-\frac{16}{b\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}}-\frac{4 a}{b^{2}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}} \\
+\frac{\ln \left(\tanh \left(\frac{x}{2}\right)^{2}+1\right) a^{5}}{b^{6}}-\frac{3 \ln \left(\tanh \left(\frac{x}{2}\right)^{2}+1\right) a^{3}}{b^{4}}+\frac{3 \ln \left(\tanh \left(\frac{x}{2}\right)^{2}+1\right) a}{b^{2}}-\frac{2 a^{3}}{b^{4}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{2}}-\frac{4 a^{2}}{b^{3}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{2}}
\end{gathered}
$$

$$
\begin{aligned}
& +\frac{4}{b\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{2}}+\frac{2 a^{4}}{b^{5}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)}+\frac{2 a^{3}}{b^{4}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)}-\frac{4 a^{2}}{b^{3}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)}-\frac{4 a}{b^{2}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)}+\frac{2}{b\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)} \\
& -\frac{\ln \left(\tanh \left(\frac{x}{2}\right)+1\right)}{a}-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{a}+\frac{a^{5} \ln \left(\tanh \left(\frac{x}{2}\right)^{2} a-\tanh \left(\frac{x}{2}\right)^{2} b+a+b\right)}{b^{6}}+\frac{3 a^{3} \ln \left(\tanh \left(\frac{x}{2}\right)^{2} a-\tanh \left(\frac{x}{2}\right)^{2} b+a+b\right)}{b^{4}} \\
& -\frac{3 a \ln \left(\tanh \left(\frac{x}{2}\right)^{2} a-\tanh \left(\frac{x}{2}\right)^{2} b+a+b\right)}{b^{2}}+\frac{\ln \left(\tanh \left(\frac{x}{2}\right)^{2} a-\tanh \left(\frac{x}{2}\right)^{2} b+a+b\right)}{a}
\end{aligned}
$$

Problem 32: Result more than twice size of optimal antiderivative.

$$
\int \frac{\tanh (x)^{3}}{a+b \operatorname{sech}(x)} \mathrm{d} x
$$

Optimal(type 3, 35 leaves, 3 steps):

$$
\frac{\ln (\cosh (x))}{a}+\frac{\left(1-\frac{a^{2}}{b^{2}}\right) \ln (a+b \operatorname{sech}(x))}{a}+\frac{\operatorname{sech}(x)}{b}
$$

Result(type 3, 106 leaves):

$$
\begin{aligned}
& \frac{\ln \left(\tanh \left(\frac{x}{2}\right)^{2}+1\right) a}{b^{2}}+\frac{2}{b\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)}-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)+1\right)}{a}-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{a}-\frac{a \ln \left(\tanh \left(\frac{x}{2}\right)^{2} a-\tanh \left(\frac{x}{2}\right)^{2} b+a+b\right)}{b^{2}} \\
& \quad+\frac{\ln \left(\tanh \left(\frac{x}{2}\right)^{2} a-\tanh \left(\frac{x}{2}\right)^{2} b+a+b\right)}{a}
\end{aligned}
$$

Problem 33: Result more than twice size of optimal antiderivative.

$$
\int \frac{\tanh (x)^{2}}{a+b \operatorname{sech}(x)} \mathrm{d} x
$$

Optimal(type 3, 52 leaves, 7 steps):

$$
\frac{x}{a}-\frac{\arctan (\sinh (x))}{b}+\frac{2 \arctan \left(\frac{\sqrt{a-b} \tanh \left(\frac{x}{2}\right)}{\sqrt{a+b}}\right) \sqrt{a-b} \sqrt{a+b}}{a b}
$$

Result(type 3, 112 leaves):

$$
-\frac{2 \arctan \left(\tanh \left(\frac{x}{2}\right)\right)}{b}+\frac{\ln \left(\tanh \left(\frac{x}{2}\right)+1\right)}{a}-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{a}+\frac{2 a \arctan \left(\frac{(a-b) \tanh \left(\frac{x}{2}\right)}{\sqrt{(a+b)(a-b)}}\right)}{b \sqrt{(a+b)(a-b)}}-\frac{2 b \arctan \left(\frac{(a-b) \tanh \left(\frac{x}{2}\right)}{\sqrt{(a+b)(a-b)}}\right)}{a \sqrt{(a+b)(a-b)}}
$$

Problem 38: Unable to integrate problem.

$$
\int \sqrt{a+b \operatorname{sech}(d x+c)} \tanh (d x+c)^{3} \mathrm{~d} x
$$

Optimal(type 3, 84 leaves, 5 steps):

$$
-\frac{2 a(a+b \operatorname{sech}(d x+c))^{3 / 2}}{3 b^{2} d}+\frac{2(a+b \operatorname{sech}(d x+c))^{5 / 2}}{5 b^{2} d}+\frac{2 \operatorname{arctanh}\left(\frac{\sqrt{a+b \operatorname{sech}(d x+c)}}{\sqrt{a}}\right) \sqrt{a}}{d}-\frac{2 \sqrt{a+b \operatorname{sech}(d x+c)}}{d}
$$

Result(type 8, 23 leaves):

$$
\int \sqrt{a+b \operatorname{sech}(d x+c)} \tanh (d x+c)^{3} \mathrm{~d} x
$$

Problem 39: Unable to integrate problem.

$$
\int \sqrt{a+b \operatorname{sech}(d x+c)} \mathrm{d} x
$$

Optimal(type 4, 116 leaves, 1 step):

$$
\frac{2 \operatorname{coth}(d x+c) \text { EllipticPi }\left(\frac{\sqrt{a+b}}{\sqrt{a+b \operatorname{sech}(d x+c)}}, \frac{a}{a+b}, \sqrt{\frac{a-b}{a+b}}\right)(a+b \operatorname{sech}(d x+c)) \sqrt{-\frac{b(1-\operatorname{sech}(d x+c))}{a+b \operatorname{sech}(d x+c)}} \sqrt{\frac{b(1+\operatorname{sech}(d x+c))}{a+b \operatorname{sech}(d x+c)}}}{d \sqrt{a+b}}
$$

Result(type 8, 14 leaves):

$$
\int \sqrt{a+b \operatorname{sech}(d x+c)} \mathrm{d} x
$$

Problem 40: Unable to integrate problem.

$$
\int \frac{\tanh (d x+c)^{5}}{\sqrt{a+b \operatorname{sech}(d x+c)}} \mathrm{d} x
$$

Optimal(type 3, 128 leaves, 5 steps):
$-\frac{2\left(3 a^{2}-2 b^{2}\right)(a+b \operatorname{sech}(d x+c))^{3 / 2}}{3 b^{4} d}+\frac{6 a(a+b \operatorname{sech}(d x+c))^{5 / 2}}{5 b^{4} d}-\frac{2(a+b \operatorname{sech}(d x+c))^{7 / 2}}{7 b^{4} d}+\frac{2 \operatorname{arctanh}\left(\frac{\sqrt{a+b \operatorname{sech}(d x+c)}}{\sqrt{a}}\right)}{d \sqrt{a}}$
$+\frac{2 a\left(a^{2}-2 b^{2}\right) \sqrt{a+b \operatorname{sech}(d x+c)}}{b^{4} d}$
Result(type 8, 23 leaves):

$$
\int \frac{\tanh (d x+c)^{5}}{\sqrt{a+b \operatorname{sech}(d x+c)}} \mathrm{d} x
$$

Problem 41: Unable to integrate problem.

$$
\int \frac{\tanh (d x+c)^{5}}{(a+b \operatorname{sech}(d x+c))^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 132 leaves, 5 steps):
$\frac{2 \operatorname{arctanh}\left(\frac{\sqrt{a+b \operatorname{sech}(d x+c)}}{\sqrt{a}}\right)}{a^{3 / 2} d}+\frac{2 a(a+b \operatorname{sech}(d x+c))^{3 / 2}}{b^{4} d}-\frac{2(a+b \operatorname{sech}(d x+c))^{5 / 2}}{5 b^{4} d}-\frac{2\left(a^{2}-b^{2}\right)^{2}}{a b^{4} d \sqrt{a+b \operatorname{sech}(d x+c)}}$

$$
-\frac{2\left(3 a^{2}-2 b^{2}\right) \sqrt{a+b \operatorname{sech}(d x+c)}}{b^{4} d}
$$

Result(type 8, 23 leaves):

$$
\int \frac{\tanh (d x+c)^{5}}{(a+b \operatorname{sech}(d x+c))^{3 / 2}} \mathrm{~d} x
$$

Problem 42: Unable to integrate problem.

$$
\int \frac{\tanh (d x+c)^{4}}{(a+b \operatorname{sech}(d x+c))^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 830 leaves, 17 steps):
$-\frac{2 \operatorname{coth}(d x+c) \text { EllipticE }\left(\frac{\sqrt{a+b \operatorname{sech}(d x+c)}}{\sqrt{a+b}}, \sqrt{\frac{a+b}{a-b}}\right) \sqrt{\frac{b(1-\operatorname{sech}(d x+c))}{a+b}} \sqrt{-\frac{b(1+\operatorname{sech}(d x+c))}{a-b}}}{a d \sqrt{a+b}}$

$-\underline{2 a\left(8 a^{2}-5 b^{2}\right) \operatorname{coth}(d x+c) \text { EllipticE }\left(\frac{\sqrt{a+b \operatorname{sech}(d x+c)}}{\sqrt{a+b}}, \sqrt{\frac{a+b}{a-b}}\right) \sqrt{\frac{b(1-\operatorname{sech}(d x+c))}{a+b}} \sqrt{-\frac{b(1+\operatorname{sech}(d x+c))}{a-b}}}$

$$
\begin{aligned}
& +\frac{2 \operatorname{coth}(d x+c) \text { EllipticF }\left(\frac{\sqrt{a+b \operatorname{sech}(d x+c)}}{\sqrt{a+b}}, \sqrt{\frac{a+b}{a-b}}\right) \sqrt{\frac{b(1-\operatorname{sech}(d x+c))}{a+b}} \sqrt{-\frac{b(1+\operatorname{sech}(d x+c))}{a-b}}}{} \\
& a d \sqrt{a+b} \\
& +\frac{4 \operatorname{coth}(d x+c) \text { EllipticF }\left(\frac{\sqrt{a+b \operatorname{sech}(d x+c)}}{\sqrt{a+b}}, \sqrt{\frac{a+b}{a-b}}\right) \sqrt{\frac{b(1-\operatorname{sech}(d x+c))}{a+b}} \sqrt{-\frac{b(1+\operatorname{sech}(d x+c))}{a-b}}}{b d \sqrt{a+b}} \\
& 2(2 a+b)(4 a+b) \operatorname{coth}(d x+c) \text { EllipticF }\left(\frac{\sqrt{a+b \operatorname{sech}(d x+c)}}{\sqrt{a+b}}, \sqrt{\frac{a+b}{a-b}}\right) \sqrt{\frac{b(1-\operatorname{sech}(d x+c))}{a+b}} \sqrt{-\frac{b(1+\operatorname{sech}(d x+c))}{a-b}} \\
& 3 b^{3} d \sqrt{a+b} \\
& +\frac{2 \operatorname{coth}(d x+c) \operatorname{EllipticPi}\left(\frac{\sqrt{a+b \operatorname{sech}(d x+c)}}{\sqrt{a+b}}, \frac{a+b}{a}, \sqrt{\frac{a+b}{a-b}}\right) \sqrt{a+b} \sqrt{\frac{b(1-\operatorname{sech}(d x+c))}{a+b}} \sqrt{-\frac{b(1+\operatorname{sech}(d x+c))}{a-b}}}{a^{2} d} \\
& -\frac{4 a \tanh (d x+c)}{\left(a^{2}-b^{2}\right) d \sqrt{a+b \operatorname{sech}(d x+c)}}+\frac{2 b^{2} \tanh (d x+c)}{a\left(a^{2}-b^{2}\right) d \sqrt{a+b \operatorname{sech}(d x+c)}}-\frac{2 a^{2} \operatorname{sech}(d x+c) \tanh (d x+c)}{b\left(a^{2}-b^{2}\right) d \sqrt{a+b \operatorname{sech}(d x+c)}} \\
& +\frac{2\left(4 a^{2}-b^{2}\right) \sqrt{a+b \operatorname{sech}(d x+c)} \tanh (d x+c)}{3 b^{2}\left(a^{2}-b^{2}\right) d}
\end{aligned}
$$

Result(type 8, 23 leaves):

$$
\int \frac{\tanh (d x+c)^{4}}{(a+b \operatorname{sech}(d x+c))^{3 / 2}} \mathrm{~d} x
$$

Problem 43: Unable to integrate problem.

$$
\int \frac{\tanh (d x+c)^{2}}{(a+b \operatorname{sech}(d x+c))^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 315 leaves, 7 steps):
$\frac{2(a-b) \operatorname{coth}(d x+c) \text { EllipticE }\left(\frac{\sqrt{a+b \operatorname{sech}(d x+c)}}{\sqrt{a+b}}, \sqrt{\frac{a+b}{a-b}}\right) \sqrt{a+b} \sqrt{\frac{b(1-\operatorname{sech}(d x+c))}{a+b}} \sqrt{-\frac{b(1+\operatorname{sech}(d x+c))}{a-b}}}{a b^{2} d}$
$\left.\left.+\frac{2 \operatorname{coth}(d x+c) \text { EllipticF }\left(\frac{\sqrt{a+b \operatorname{sech}(d x+c)}}{\sqrt{a+b}}, \sqrt{\frac{a+b}{a-b}}\right) \sqrt{a+b} \sqrt{\frac{b(1-\operatorname{sech}(d x+c))}{a+b}} \sqrt{-\frac{b(1+\operatorname{sech}(d x+c))}{a-b}}}{a b d} \sqrt{\sqrt{a+b}}, \frac{a+b}{a}, \sqrt{\frac{a+b}{a-b}}\right) \sqrt{a+b} \sqrt{\frac{b(1-\operatorname{sech}(d x+c))}{a+b}} \sqrt{-\frac{b(1+\operatorname{sech}(d x+c))}{a-b}}\right)$
$-\frac{2 \tanh (d x+c)}{a d \sqrt{a+b \operatorname{sech}(d x+c)}}$
Result(type 8, 23 leaves):

$$
\int \frac{\tanh (d x+c)^{2}}{(a+b \operatorname{sech}(d x+c))^{3 / 2}} \mathrm{~d} x
$$

Problem 47: Unable to integrate problem.

$$
\int \frac{\sqrt{\operatorname{sech}(2 \ln (c x))}}{x^{2}} \mathrm{~d} x
$$

Optimal(type 3, 34 leaves, 5 steps):

Result(type 8, 15 leaves):

$$
\int \frac{\sqrt{\operatorname{sech}(2 \ln (c x))}}{x^{2}} \mathrm{~d} x
$$

Problem 49: Unable to integrate problem.

$$
\int \operatorname{sech}\left(a+2 \ln \left(\frac{c}{\sqrt{x}}\right)\right)^{3} \mathrm{~d} x
$$

Optimal(type 1, 25 leaves, 4 steps):

$$
\frac{2 c^{2}}{\mathrm{e}^{3 a}\left(\mathrm{e}^{-2 a}+\frac{c^{4}}{x^{2}}\right)^{2}}
$$

Result(type 8, 15 leaves):

$$
\int \operatorname{sech}\left(a+2 \ln \left(\frac{c}{\sqrt{x}}\right)\right)^{3} \mathrm{~d} x
$$

Problem 50: Unable to integrate problem.

$$
\int \operatorname{sech}\left(a-\frac{\ln \left(c x^{n}\right)}{n(-2+p)}\right)^{p} \mathrm{~d} x
$$

Optimal(type 3, 66 leaves, 3 steps):

$$
\frac{(2-p) x\left(1+\frac{1}{\mathrm{e}^{2 a}\left(c x^{n}\right)^{\frac{2}{n(2-p)}}}\right) \operatorname{sech}\left(a+\frac{\ln \left(c x^{n}\right)}{n(2-p)}\right)^{p}}{2(1-p)}
$$

Result(type 8, 23 leaves):

$$
\int \operatorname{sech}\left(a-\frac{\ln \left(c x^{n}\right)}{n(-2+p)}\right)^{p} \mathrm{~d} x
$$

Test results for the 57 problems in "6.5.7 (d hyper)^m (a+b (c sech) ^n)^p.txt"
Problem 12: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sinh (d x+c)^{2}}{\left(a+b \operatorname{sech}(d x+c)^{2}\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 117 leaves, 6 steps):

$$
-\frac{(4 b+a) x}{2 a^{3}}+\frac{(3 a+4 b) \operatorname{arctanh}\left(\frac{\sqrt{b} \tanh (d x+c)}{\sqrt{a+b}}\right) \sqrt{b}}{2 a^{3} d \sqrt{a+b}}+\frac{\cosh (d x+c) \sinh (d x+c)}{2 a d\left(a+b-b \tanh (d x+c)^{2}\right)}+\frac{b \tanh (d x+c)}{a^{2} d\left(a+b-b \tanh (d x+c)^{2}\right)}
$$

Result(type 3, 536 leaves):

$$
-\frac{1}{2 d a^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)^{2}}+\frac{1}{2 d a^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)}-\frac{2 \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right) b}{d a^{3}}-\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)}{2 d a^{2}}
$$

$$
+\frac{1}{2 d a^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)^{2}}+\frac{1}{2 d a^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)}+\frac{2 \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right) b}{d a^{3}}+\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)}{2 d a^{2}}
$$

$$
+\frac{b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3}}{d a^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)}
$$

$$
+\frac{b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{d a^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)}
$$

$$
+\frac{3 \sqrt{b} \ln \left(\sqrt{a+b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+2 \sqrt{b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+\sqrt{a+b}\right)}{4 d a^{2} \sqrt{a+b}}
$$

$$
\begin{aligned}
& -\frac{3 \sqrt{b} \ln \left(\sqrt{a+b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}-2 \sqrt{b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+\sqrt{a+b}\right)}{4 d a^{2} \sqrt{a+b}} \\
& +\frac{b^{3 / 2} \ln \left(\sqrt{a+b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+2 \sqrt{b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+\sqrt{a+b}\right)}{d a^{3} \sqrt{a+b}} \\
& -\frac{b^{3 / 2} \ln \left(\sqrt{a+b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}-2 \sqrt{b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+\sqrt{a+b}\right)}{d a^{3} \sqrt{a+b}}
\end{aligned}
$$

Problem 13: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{csch}(d x+c)^{3}}{\left(a+b \operatorname{sech}(d x+c)^{2}\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 131 leaves, 6 steps):
$\frac{(a-3 b) \operatorname{arctanh}(\cosh (d x+c))}{2(a+b)^{3} d}-\frac{(a-b) \cosh (d x+c)}{2(a+b)^{2} d\left(b+a \cosh (d x+c)^{2}\right)}-\frac{\operatorname{coth}(d x+c) \operatorname{csch}(d x+c)}{2(a+b) d\left(b+a \cosh (d x+c)^{2}\right)}$
$-\frac{(3 a-b) \arctan \left(\frac{\cosh (d x+c) \sqrt{a}}{\sqrt{b}}\right) \sqrt{b}}{2(a+b)^{3} \sqrt{a}}$

$$
2(a+b)^{3} d \sqrt{a}
$$

Result(type 3, 495 leaves):

$$
\begin{aligned}
& \frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}{8 d\left(a^{2}+2 a b+b^{2}\right)}-\frac{1}{8 d(a+b)^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}-\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right) a}{2 d(a+b)^{3}}+\frac{3 \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right) b}{2 d(a+b)^{3}} \\
& +\frac{b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a}{d(a+b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)} \\
& -\frac{b^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}{d(a+b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)} \\
& +\frac{b a}{d(a+b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{b^{2}}{d(a+b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)} \\
& -\frac{3 b \arctan \left(\frac{2(a+b) \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+2 a-2 b}{4 \sqrt{a b}}\right) a}{2 d(a+b)^{3} \sqrt{a b}}+\frac{b^{2} \arctan \left(\frac{2(a+b) \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+2 a-2 b}{4 \sqrt{a b}}\right)}{2 d(a+b)^{3} \sqrt{a b}}
\end{aligned}
$$

Problem 14: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sinh (d x+c)^{4}}{\left(a+b \operatorname{sech}(d x+c)^{2}\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 222 leaves, 8 steps):

$$
\begin{aligned}
& \frac{3\left(a^{2}+12 a b+16 b^{2}\right) x}{8 a^{5}}-\frac{3\left(5 a^{2}+20 a b+16 b^{2}\right) \operatorname{arctanh}\left(\frac{\sqrt{b} \tanh (d x+c)}{\sqrt{a+b}}\right) \sqrt{b}}{8 a^{5} d \sqrt{a+b}}-\frac{(5 a+8 b) \cosh (d x+c) \sinh (d x+c)}{8 a^{2} d\left(a+b-b \tanh (d x+c)^{2}\right)^{2}} \\
& \quad+\frac{\cosh (d x+c)^{3} \sinh (d x+c)}{4 a d\left(a+b-b \tanh (d x+c)^{2}\right)^{2}}-\frac{b(7 a+12 b) \tanh (d x+c)}{8 a^{3} d\left(a+b-b \tanh (d x+c)^{2}\right)^{2}}-\frac{3 b(a+2 b) \tanh (d x+c)}{2 a^{4} d\left(a+b-b \tanh (d x+c)^{2}\right)}
\end{aligned}
$$

Result(type 3, 1667 leaves):

$$
\begin{aligned}
& \frac{3 b}{2 d a^{4}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)^{2}}-\frac{3 b}{2 d a^{4}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)}+\frac{9 \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right) b}{2 d a^{4}}+\frac{6 \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right) b^{2}}{d a^{5}} \\
& -\frac{3 b}{2 d a^{4}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)^{2}}-\frac{3 b}{2 d a^{4}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)}-\frac{9 \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right) b}{2 d a^{4}}-\frac{6 \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right) b^{2}}{d a^{5}} \\
& +\frac{3 \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)}{8 d a^{3}}-\frac{3 \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)}{8 d a^{3}}-\frac{1}{4 d a^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)^{4}}+\frac{2 d a^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)^{3}}{1} \\
& +\frac{8 d a^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)^{2}}{8 d a^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)}+\frac{4 d a^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)^{4}}{2 d a^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)^{3}} \\
& -
\end{aligned}
$$

$$
\begin{aligned}
& 9 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{7} \\
& 4 d a^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2} \\
& 21 b^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{7} \\
& 4 d a^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2} \\
& 3 b^{3} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{7} \\
& d a^{4}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2} \\
& 27 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{5} \\
& 4 d a^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2} \\
& 35 b^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{5} \\
& 4 d a^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2} \\
& +\frac{3 b^{3} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{5}}{d a^{4}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2}} \\
& -\xrightarrow{27 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3}} \\
& 4 d a^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2} \\
& -\frac{35 b^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3}}{4 d a^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2}} \\
& 3 b^{3} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3} \\
& d a^{4}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& 9 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right) \\
& 4 d a^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2} \\
& 21 b^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right) \\
& 4 d a^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2} \\
& 3 b^{3} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right) \\
& d a^{4}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2} \\
& +\frac{15 \sqrt{b} \ln \left(\sqrt{a+b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}-2 \sqrt{b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+\sqrt{a+b}\right)}{} \\
& 16 d a^{3} \sqrt{a+b} \\
& -\frac{15 \sqrt{b} \ln \left(\sqrt{a+b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+2 \sqrt{b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+\sqrt{a+b}\right)}{16 d a^{3} \sqrt{a+b}} \\
& -\frac{15 b^{3 / 2} \ln \left(\sqrt{a+b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+2 \sqrt{b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+\sqrt{a+b}\right)}{4 d a^{4} \sqrt{a+b}} \\
& +\frac{15 b^{3 / 2} \ln \left(\sqrt{a+b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}-2 \sqrt{b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+\sqrt{a+b}\right)}{4 d a^{4} \sqrt{a+b}} \\
& -\frac{3 b^{5 / 2} \ln \left(\sqrt{a+b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+2 \sqrt{b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+\sqrt{a+b}\right)}{d a^{5} \sqrt{a+b}} \\
& +\frac{3 b^{5 / 2} \ln \left(\sqrt{a+b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}-2 \sqrt{b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+\sqrt{a+b}\right)}{d a^{5} \sqrt{a+b}}
\end{aligned}
$$

Problem 15: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{csch}(d x+c)}{\left(a+b \operatorname{sech}(d x+c)^{2}\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 140 leaves, 6 steps):
$-\frac{\operatorname{arctanh}(\cosh (d x+c))}{(a+b)^{3} d}-\frac{b \cosh (d x+c)^{3}}{4 a(a+b) d\left(b+a \cosh (d x+c)^{2}\right)^{2}}-\frac{b(7 a+3 b) \cosh (d x+c)}{8 a^{2}(a+b)^{2} d\left(b+a \cosh (d x+c)^{2}\right)}$
$+\frac{\left(15 a^{2}+10 a b+3 b^{2}\right) \arctan \left(\frac{\cosh (d x+c) \sqrt{a}}{\sqrt{b}}\right) \sqrt{b}}{8 a^{5 / 2}(a+b)^{3} d}$
Result(type 3, 1475 leaves):

$$
\begin{aligned}
& \frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right)}{d(a+b)^{3}}-\frac{9 b a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{6}}{4 d(a+b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2}} \\
& +\frac{b^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{6}}{4 d(a+b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2}} \\
& +\frac{13 b^{3} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{6}}{4 d(a+b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2} a} \\
& +\frac{3 b^{4} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{6}}{4 d(a+b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2} a^{2}} \\
& \quad-\frac{27 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a}{4 d(a+b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2}} \\
& \quad+\frac{9 b^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}}{4 d(a+b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2}} \\
&
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{9 b^{4} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}}{4 d(a+b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2} a^{2}} \\
& 27 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a \\
& 4 d(a+b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2} \\
& 13 b^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} \\
& 4 d(a+b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2} \\
& 23 b^{3} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} \\
& 4 d(a+b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2} a \\
& 9 b^{4} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} \\
& 4 d(a+b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2} a^{2} \\
& -\frac{9 b a}{4 d(a+b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2}} \\
& -\frac{21 b^{2}}{4 d(a+b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2}} \\
& -\frac{15 b^{3}}{4 d(a+b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2} a} \\
& -\frac{3 b^{4}}{4 d(a+b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2} a^{2}} \\
& +\frac{15 b \arctan \left(\frac{2(a+b) \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+2 a-2 b}{4 \sqrt{a b}}\right)}{5 b^{2} \arctan \left(\frac{2(a+b) \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+2 a-2 b}{4 \sqrt{a b}}\right)} \\
& 8 d(a+b)^{3} \sqrt{a b} \\
& 4 d(a+b)^{3} a \sqrt{a b}
\end{aligned}
$$

$+\frac{3 b^{3} \arctan \left(\frac{2(a+b) \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+2 a-2 b}{4 \sqrt{a b}}\right)}{8 d(a+b)^{3} a^{2} \sqrt{a b}}$

Problem 16: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{csch}(d x+c)^{3}}{\left(a+b \operatorname{sech}(d x+c)^{2}\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 195 leaves, 7 steps):

$$
\begin{aligned}
& \frac{(a-5 b) \operatorname{arctanh}(\cosh (d x+c))}{2(a+b)^{4} d}+\frac{(2 a-b) b \cosh (d x+c)}{4 a(a+b)^{2} d\left(b+a \cosh (d x+c)^{2}\right)^{2}}-\frac{\left(4 a^{2}-9 a b-b^{2}\right) \cosh (d x+c)}{8 a(a+b)^{3} d\left(b+a \cosh (d x+c)^{2}\right)} \\
& -\frac{\cosh (d x+c) \operatorname{coth}(d x+c)^{2}}{2(a+b) d\left(b+a \cosh (d x+c)^{2}\right)^{2}}-\frac{\left(15 a^{2}-10 a b-b^{2}\right) \arctan \left(\frac{\cosh (d x+c) \sqrt{a}}{\sqrt{b}}\right) \sqrt{b}}{8 a^{3 / 2}(a+b)^{4} d}
\end{aligned}
$$

Result(type 3, 1554 leaves):

$$
\begin{aligned}
& \frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}{8 d\left(a^{3}+3 b a^{2}+3 b^{2} a+b^{3}\right)}-\frac{1}{8 d(a+b)^{3} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}-\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right) a}{2 d(a+b)^{4}}+\frac{5 \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right) b}{2 d(a+b)^{4}} \\
&+ \frac{9 b a^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{6}}{4 d(a+b)^{4}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2}} \\
&- \frac{5 b^{2} a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{6}}{4 d(a+b)^{4}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2}} \\
&- \frac{13 b^{3} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{6}}{4 d(a+b)^{4}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2}} \\
&+ \frac{b^{4} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{6}}{4 d(a+b)^{4}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2} a}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{27 b a^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}}{4 d(a+b)^{4}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2}} \\
& 21 b^{2} a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} \\
& 4 d(a+b)^{4}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2} \\
& +\frac{29 b^{3} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}}{4 d(a+b)^{4}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2}} \\
& 3 b^{4} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} \\
& 4 d(a+b)^{4}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2} a \\
& +\xrightarrow{27 b a^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+2} \\
& 4 d(a+b)^{4}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2} \\
& +\frac{b^{2} a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}{4 d(a+b)^{4}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2}} \\
& 23 b^{3} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} \\
& 4 d(a+b)^{4}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2} \\
& +\frac{3 b^{4} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}{4 d(a+b)^{4}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2} a} \\
& +\frac{9 b a^{2}}{4 d(a+b)^{4}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{17 b^{2} a}{4 d(a+b)^{4}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2}} \\
& +\frac{7 b^{3}}{4 d(a+b)^{4}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2}} \\
& -\frac{b^{4}}{4 d(a+b)^{4}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2} a} \\
& -\frac{15 b a \arctan \left(\frac{2(a+b) \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+2 a-2 b}{4 \sqrt{a b}}\right)}{4 b^{2} \arctan \left(\frac{2(a+b) \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+2 a-2 b}{4 \sqrt{a b}}\right)} \\
& 8 d(a+b)^{4} \sqrt{a b} \\
& 4 d(a+b)^{4} \sqrt{a b} \\
& +\frac{b^{3} \arctan \left(\frac{2(a+b) \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+2 a-2 b}{4 \sqrt{a b}}\right)}{8 d(a+b)^{4} a \sqrt{a b}}
\end{aligned}
$$

Problem 24: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{sech}(d x+c)^{4}}{a+b \operatorname{sech}(d x+c)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 44 leaves, 3 steps):

$$
-\frac{a \operatorname{arctanh}\left(\frac{\sqrt{b} \tanh (d x+c)}{\sqrt{a+b}}\right)}{b^{3 / 2} d \sqrt{a+b}}+\frac{\tanh (d x+c)}{d b}
$$

Result(type 3, 137 leaves):

$$
\begin{gathered}
\frac{2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{d b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)}-\frac{a \ln \left(\sqrt{a+b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+2 \sqrt{b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+\sqrt{a+b}\right)}{2 d b^{3 / 2} \sqrt{a+b}} \\
+\frac{a \ln \left(\sqrt{a+b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}-2 \sqrt{b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+\sqrt{a+b}\right)}{2 d b^{3 / 2} \sqrt{a+b}}
\end{gathered}
$$

[^0]$$
\int \frac{\operatorname{sech}(d x+c)^{5}}{a+b \operatorname{sech}(d x+c)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 74 leaves, 5 steps):

$$
-\frac{(2 a-b) \arctan (\sinh (d x+c))}{2 b^{2} d}+\frac{a^{3 / 2} \arctan \left(\frac{\sinh (d x+c) \sqrt{a}}{\sqrt{a+b}}\right)}{b^{2} d \sqrt{a+b}}+\frac{\operatorname{sech}(d x+c) \tanh (d x+c)}{2 d b}
$$

Result(type 3, 188 leaves):

$$
\begin{aligned}
& \left.-\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3}}{d b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)^{2}}+\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{d b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)^{2}}+\frac{\arctan \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right)}{d b}-\frac{2 \arctan \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right) a}{d b^{2}}\right) \\
& +\frac{a^{3 / 2} \arctan \left(\frac{\left.2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right) \sqrt{a+b}+2 \sqrt{b}\right)}{2 \sqrt{a}}\right)}{a^{3 / 2} \arctan \left(\frac{\left.2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right) \sqrt{a+b}-2 \sqrt{b}\right)}{2 \sqrt{a+b}}\right)}
\end{aligned}
$$

Problem 26: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{sech}(d x+c)^{6}}{\left(a+b \operatorname{sech}(d x+c)^{2}\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 89 leaves, 5 steps):

$$
-\frac{a(3 a+4 b) \operatorname{arctanh}\left(\frac{\sqrt{b} \tanh (d x+c)}{\sqrt{a+b}}\right)}{2 b^{5 / 2}(a+b)^{3 / 2} d}+\frac{\tanh (d x+c)}{b^{2} d}+\frac{a^{2} \tanh (d x+c)}{2 b^{2}(a+b) d\left(a+b-b \tanh (d x+c)^{2}\right)}
$$

Result(type 3, 1097 leaves):

$$
\begin{gathered}
\frac{2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{d b^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)}+\frac{a^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3}}{d b^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)(a+b)} \\
+\frac{a^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{d b^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)(a+b)} \\
-\frac{3 a^{2} \sqrt{a b+b^{2}} \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+2 \sqrt{(a+b) b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+a+b\right)}{4 d b^{3}(a+b)^{2}}
\end{gathered}
$$

Problem 27: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{sech}(d x+c)^{7}}{\left(a+b \operatorname{sech}(d x+c)^{2}\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 137 leaves, 6 steps):
$-\frac{(4 a-b) \arctan (\sinh (d x+c))}{2 b^{3} d}+\frac{a^{3 / 2}(4 a+5 b) \arctan \left(\frac{\sinh (d x+c) \sqrt{a}}{\sqrt{a+b}}\right)}{2 b^{3}(a+b)^{3 / 2} d}+\frac{a(2 a+b) \sinh (d x+c)}{2 b^{2}(a+b) d\left(a+b+a \sinh (d x+c)^{2}\right)}$

$$
+\frac{\operatorname{sech}(d x+c) \tanh (d x+c)}{2 b d\left(a+b+a \sinh (d x+c)^{2}\right)}
$$

Result(type 3, 539 leaves):

$$
\begin{aligned}
&-\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3}}{d b^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)^{2}}+\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{d b^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)^{2}}+\frac{\arctan \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right)}{d b^{2}}-\frac{4 \arctan \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right) a}{d b^{3}} \\
&- \frac{a^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3}}{d b^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)(a+b)} \\
&+ \frac{\left.a^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}\right)}{d b^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)(a+b)} \\
&+ \frac{4 a^{3} \arctan \left(\frac{\left.2(a+b) \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+2 \sqrt{(a+b) b}\right)}{2 \sqrt{a^{2}+a b}}\right)}{4 a^{3} \arctan \left(\frac{2(-a-b) \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+2 \sqrt{(a+b) b}}{2 \sqrt{a^{2}+a b}}\right)} \\
&+\frac{5 a^{2} \arctan \left(\frac{\left.2(a+b) \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+2 \sqrt{(a+b) b}\right)}{2 \sqrt{a^{2}+a b}}\right)}{5 a^{2} \arctan \left(\frac{\left.2(-a-b) \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+2 \sqrt{(a+b) b}\right)}{2 \sqrt{a^{2}+a b}}\right)}
\end{aligned}
$$

Problem 28: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{sech}(d x+c)^{6}}{\left(a+b \operatorname{sech}(d x+c)^{2}\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 130 leaves, 4 steps):

$$
\frac{\left(3 a^{2}+8 a b+8 b^{2}\right) \operatorname{arctanh}\left(\frac{\sqrt{b} \tanh (d x+c)}{\sqrt{a+b}}\right)}{8 b^{5 / 2}(a+b)^{5 / 2} d}-\frac{a \operatorname{sech}(d x+c)^{2} \tanh (d x+c)}{4 b(a+b) d\left(a+b-b \tanh (d x+c)^{2}\right)^{2}}-\frac{3 a(a+2 b) \tanh (d x+c)}{8 b^{2}(a+b)^{2} d\left(a+b-b \tanh (d x+c)^{2}\right)}
$$

Result(type ?, 3891 leaves): Display of huge result suppressed!
Problem 29: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{sech}(d x+c)^{7}}{\left(a+b \operatorname{sech}(d x+c)^{2}\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 139 leaves, 6 steps):
$\arctan (\sinh (d x+c))$

$$
\frac{a \sinh (d x+c)}{4 b(a+b) d\left(a+b+a \sinh (d x+c)^{2}\right)^{2}}-\frac{a(4 a+7 b) \sinh (d x+c)}{8 b^{2}(a+b)^{2} d\left(a+b+a \sinh (d x+c)^{2}\right)}
$$

$$
-\frac{\left(8 a^{2}+20 a b+15 b^{2}\right) \arctan \left(\frac{\sinh (d x+c) \sqrt{a}}{\sqrt{a+b}}\right) \sqrt{a}}{8 b^{3}(a+b)^{5 / 2} d}
$$

Result(type 3, 1448 leaves):

$$
\begin{aligned}
& \frac{2 \arctan \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right)}{d b^{3}}+\frac{a^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{7}}{d\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2} b^{2}(a+b)} \\
&+ \frac{9 a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{7}}{4 d\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2} b(a+b)} \\
&+ \frac{a^{3} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{5}}{d\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2}(a+b)^{2} b^{2}} \\
&- \frac{11 a^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{5}}{4 d\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2}(a+b)^{2} b} \\
&- \frac{27 a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{5}}{4 d\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2}(a+b)^{2}} \\
&- \frac{a^{3} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3}}{d\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2}(a+b)^{2} b^{2}} \\
& 4 d\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2}(a+b)^{2} b
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{27 a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3}}{4 d\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2}(a+b)^{2}} \\
& a^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right) \\
& d\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2} b^{2}(a+b) \\
& 9 a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right) \\
& 4 d\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2} b(a+b) \\
& \left.\left.+\frac{a^{3} \arctan \left(\frac{-2 \sqrt{(a+b)^{3}} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+2 \sqrt{(a+b)^{2} b}}{2 \sqrt{a^{3}+2 b a^{2}+b^{2} a}}\right)}{2 \sqrt{a^{3}+2 b a^{2}+b^{2} a}}\right) \frac{a^{3} \arctan \left(\frac{2 \sqrt{(a+b)^{3}} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+2 \sqrt{(a+b)^{2} b}}{2 \sqrt{a^{2}}}\right)}{\left(\frac{2 a^{2}}{a^{2}+2 b a^{2}}\right.}\right) \\
& d b^{3} \sqrt{a^{3}+3 b a^{2}+3 b^{2} a+b^{3}} \sqrt{a^{3}+2 b a^{2}+b^{2} a}--d b^{3} \sqrt{a^{3}+3 b a^{2}+3 b^{2} a+b^{3}} \sqrt{a^{3}+2 b a^{2}+b^{2} a} \\
& \left.+\frac{5 a^{2} \arctan \left(\frac{-2 \sqrt{(a+b)^{3}} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+2 \sqrt{(a+b)^{2} b}}{2 \sqrt{a^{3}+2 b a^{2}+b^{2} a}}\right)}{2 \sqrt{a^{3}+2 b a^{2}+b^{2} a}}\right) \\
& 2 d b^{2} \sqrt{a^{3}+3 b a^{2}+3 b^{2} a+b^{3}} \sqrt{a^{3}+2 b a^{2}+b^{2} a} \quad 2 d b^{2} \sqrt{a^{3}+3 b a^{2}+3 b^{2} a+b^{3}} \sqrt{a^{3}+2 b a^{2}+b^{2} a} \\
& \left.+\frac{15 a \arctan \left(\frac{-2 \sqrt{(a+b)^{3}} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+2 \sqrt{(a+b)^{2} b}}{2 \sqrt{a^{3}+2 b a^{2}+b^{2} a}}\right)}{2 \sqrt{a^{3}+2 b a^{2}+b^{2} a}}\right) \frac{15 a \arctan \left(\frac{2 \sqrt{(a+b)^{3}} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+2 \sqrt{(a+b)^{2} b}}{2 \sqrt{a^{3}+2 b a^{2}+b^{2}}}\right.}{} \\
& 8 d b \sqrt{a^{3}+3 b a^{2}+3 b^{2} a+b^{3}} \sqrt{a^{3}+2 b a^{2}+b^{2} a} \\
& 8 d b \sqrt{a^{3}+3 b a^{2}+3 b^{2} a+b^{3}} \sqrt{a^{3}+2 b a^{2}+b^{2} a}
\end{aligned}
$$

Problem 30: Result more than twice size of optimal antiderivative.

$$
\int\left(a+b \operatorname{sech}(d x+c)^{2}\right) \tanh (d x+c)^{4} \mathrm{~d} x
$$

Optimal(type 3, 44 leaves, 4 steps):

$$
a x-\frac{a \tanh (d x+c)}{d}-\frac{a \tanh (d x+c)^{3}}{3 d}+\frac{b \tanh (d x+c)^{5}}{5 d}
$$

Result(type 3, 97 leaves):
$\frac{1}{d}\left(a\left(d x+c-\tanh (d x+c)-\frac{\tanh (d x+c)^{3}}{3}\right)+b\left(-\frac{\sinh (d x+c)^{3}}{2 \cosh (d x+c)^{5}}-\frac{3 \sinh (d x+c)}{8 \cosh (d x+c)^{5}}\right.\right.$

Problem 31: Result more than twice size of optimal antiderivative.

$$
\int\left(a+b \operatorname{sech}(d x+c)^{2}\right)^{2} \tanh (d x+c)^{3} \mathrm{~d} x
$$

Optimal(type 3, 71 leaves, 4 steps):

$$
\frac{a^{2} \ln (\cosh (d x+c))}{d}+\frac{a(a-2 b) \operatorname{sech}(d x+c)^{2}}{2 d}+\frac{(2 a-b) b \operatorname{sech}(d x+c)^{4}}{4 d}+\frac{b^{2} \operatorname{sech}(d x+c)^{6}}{6 d}
$$

Result(type 3, 149 leaves):
$\frac{a^{2} \ln (\cosh (d x+c))}{d}-\frac{\tanh (d x+c)^{2} a^{2}}{2 d}-\frac{a b \sinh (d x+c)^{2}}{2 d \cosh (d x+c)^{4}}+\frac{a b \sinh (d x+c)^{2}}{2 d \cosh (d x+c)^{2}}-\frac{b^{2} \sinh (d x+c)^{2}}{6 d \cosh (d x+c)^{6}}+\frac{b^{2} \sinh (d x+c)^{2}}{12 d \cosh (d x+c)^{4}}+\frac{b^{2} \sinh (d x+c)^{2}}{12 d \cosh (d x+c)^{2}}$

Problem 35: Result more than twice size of optimal antiderivative.

$$
\int \operatorname{coth}(d x+c)^{4}\left(a+b \operatorname{sech}(d x+c)^{2}\right)^{2} \mathrm{~d} x
$$

Optimal(type 3, 44 leaves, 4 steps):

$$
a^{2} x-\frac{\left(a^{2}-b^{2}\right) \operatorname{coth}(d x+c)}{d}-\frac{(a+b)^{2} \operatorname{coth}(d x+c)^{3}}{3 d}
$$

Result(type 3, 95 leaves):
$\frac{1}{d}\left(a^{2}\left(d x+c-\operatorname{coth}(d x+c)-\frac{\operatorname{coth}(d x+c)^{3}}{3}\right)+2 a b\left(-\frac{\cosh (d x+c)}{2 \sinh (d x+c)^{3}}-\frac{\left(\frac{2}{3}-\frac{\operatorname{csch}(d x+c)^{2}}{3}\right) \operatorname{coth}(d x+c)}{2}\right)+b^{2}\left(\frac{2}{3}\right.\right.$
$\left.\left.-\frac{\operatorname{csch}(d x+c)^{2}}{3}\right) \operatorname{coth}(d x+c)\right)$

Problem 36: Result more than twice size of optimal antiderivative.

$$
\int \operatorname{coth}(d x+c)^{6}\left(a+b \operatorname{sech}(d x+c)^{2}\right)^{2} \mathrm{~d} x
$$

Optimal(type 3, 60 leaves, 4 steps):

$$
a^{2} x-\frac{a^{2} \operatorname{coth}(d x+c)}{d}-\frac{\left(a^{2}-b^{2}\right) \operatorname{coth}(d x+c)^{3}}{3 d}-\frac{(a+b)^{2} \operatorname{coth}(d x+c)^{5}}{5 d}
$$

Result(type 3, 162 leaves):

$$
\begin{aligned}
& \frac{1}{d}\left(a^{2}\left(d x+c-\operatorname{coth}(d x+c)-\frac{\operatorname{coth}(d x+c)^{3}}{3}-\frac{\operatorname{coth}(d x+c)^{5}}{5}\right)+2 a b\left(-\frac{\cosh (d x+c)^{3}}{2 \sinh (d x+c)^{5}}+\frac{3 \cosh (d x+c)}{8 \sinh (d x+c)^{5}}\right.\right. \\
& \left.\quad+\frac{3\left(-\frac{8}{15}-\frac{\operatorname{csch}(d x+c)^{4}}{5}+\frac{4 \operatorname{csch}(d x+c)^{2}}{15}\right) \operatorname{coth}(d x+c)}{8}\right)+b^{2}\left(-\frac{\cosh (d x+c)}{4 \sinh (d x+c)^{5}}\right. \\
& \\
& \left.\left.\quad-\frac{\left(-\frac{8}{15}-\frac{\operatorname{csch}(d x+c)^{4}}{5}+\frac{4 \operatorname{csch}(d x+c)^{2}}{15}\right) \operatorname{coth}(d x+c)}{4}\right)\right)
\end{aligned}
$$

Problem 37: Result more than twice size of optimal antiderivative.

$$
\int\left(a+b \operatorname{sech}(d x+c)^{2}\right)^{3} \tanh (d x+c)^{4} \mathrm{~d} x
$$

Optimal(type 3, 102 leaves, 4 steps):

$$
a^{3} x-\frac{a^{3} \tanh (d x+c)}{d}-\frac{a^{3} \tanh (d x+c)^{3}}{3 d}+\frac{b\left(3 a^{2}+3 a b+b^{2}\right) \tanh (d x+c)^{5}}{5 d}-\frac{b^{2}(3 a+2 b) \tanh (d x+c)^{7}}{7 d}+\frac{b^{3} \tanh (d x+c)^{9}}{9 d}
$$

Result(type 3, 273 leaves):

$$
\begin{aligned}
& \frac{1}{d}\left(a^{3}\left(d x+c-\tanh (d x+c)-\frac{\tanh (d x+c)^{3}}{3}\right)+3 b a^{2}\left(-\frac{\sinh (d x+c)^{3}}{2 \cosh (d x+c)^{5}}-\frac{3 \sinh (d x+c)}{8 \cosh (d x+c)^{5}}\right.\right. \\
& \left.\quad+\frac{3\left(\frac{8}{15}+\frac{\operatorname{sech}(d x+c)^{4}}{5}+\frac{4 \operatorname{sech}(d x+c)^{2}}{15}\right) \tanh (d x+c)}{8}\right)+3 b^{2} a\left(-\frac{\sinh (d x+c)^{3}}{4 \cosh (d x+c)^{7}}-\frac{\sinh (d x+c)}{8 \cosh (d x+c)^{7}}\right. \\
& \left.\quad+\frac{\left(\frac{16}{35}+\frac{\operatorname{sech}(d x+c)^{6}}{7}+\frac{6 \operatorname{sech}(d x+c)^{4}}{35}+\frac{8 \operatorname{sech}(d x+c)^{2}}{35}\right) \tanh (d x+c)}{8}\right)+b^{3}\left(-\frac{\sinh (d x+c)^{3}}{6 \cosh (d x+c)^{9}}-\frac{\sinh (d x+c)}{16 \cosh (d x+c)^{9}}\right. \\
& \left.\left.\quad+\frac{\left(\frac{128}{315}+\frac{\operatorname{sech}(d x+c)^{8}}{9}+\frac{8 \operatorname{sech}(d x+c)^{6}}{63}+\frac{16 \operatorname{sech}(d x+c)^{4}}{105}+\frac{64 \operatorname{sech}(d x+c)^{2}}{315}\right) \tanh (d x+c)}{16}\right)\right)
\end{aligned}
$$

Problem 38: Result more than twice size of optimal antiderivative.

$$
\int\left(a+b \operatorname{sech}(d x+c)^{2}\right)^{3} \tanh (d x+c)^{2} \mathrm{~d} x
$$

Optimal(type 3, 86 leaves, 4 steps):

$$
a^{3} x-\frac{a^{3} \tanh (d x+c)}{d}+\frac{b\left(3 a^{2}+3 a b+b^{2}\right) \tanh (d x+c)^{3}}{3 d}-\frac{b^{2}(3 a+2 b) \tanh (d x+c)^{5}}{5 d}+\frac{b^{3} \tanh (d x+c)^{7}}{7 d}
$$

Result(type 3, 179 leaves):
$\frac{1}{d}\left(a^{3}(d x+c-\tanh (d x+c))+3 b a^{2}\left(-\frac{\sinh (d x+c)}{2 \cosh (d x+c)^{3}}+\frac{\left(\frac{2}{3}+\frac{\operatorname{sech}(d x+c)^{2}}{3}\right) \tanh (d x+c)}{2}\right)+3 b^{2} a\left(-\frac{\sinh (d x+c)}{4 \cosh (d x+c)^{5}}\right.\right.$
$\left.+\frac{\left(\frac{8}{15}+\frac{\operatorname{sech}(d x+c)^{4}}{5}+\frac{4 \operatorname{sech}(d x+c)^{2}}{15}\right) \tanh (d x+c)}{4}\right)+b^{3}\left(-\frac{\sinh (d x+c)}{6 \cosh (d x+c)^{7}}\right.$
$\left.\left.+\frac{\left(\frac{16}{35}+\frac{\operatorname{sech}(d x+c)^{6}}{7}+\frac{6 \operatorname{sech}(d x+c)^{4}}{35}+\frac{8 \operatorname{sech}(d x+c)^{2}}{35}\right) \tanh (d x+c)}{6}\right)\right)$

Problem 40: Result more than twice size of optimal antiderivative.

$$
\int \operatorname{coth}(d x+c)^{5}\left(a+b \operatorname{sech}(d x+c)^{2}\right)^{3} \mathrm{~d} x
$$

Optimal(type 3, 77 leaves, 4 steps):

$$
-\frac{(2 a-b)(a+b)^{2} \operatorname{csch}(d x+c)^{2}}{2 d}-\frac{(a+b)^{3} \operatorname{csch}(d x+c)^{4}}{4 d}-\frac{b^{3} \ln (\cosh (d x+c))}{d}+\frac{\left(a^{3}+b^{3}\right) \ln (\sinh (d x+c))}{d}
$$

Result (type 3, 193 leaves):
$\frac{a^{3} \ln (\sinh (d x+c))}{d}-\frac{a^{3} \operatorname{coth}(d x+c)^{2}}{2 d}-\frac{a^{3} \operatorname{coth}(d x+c)^{4}}{4 d}-\frac{3 b a^{2} \cosh (d x+c)^{2}}{4 d \sinh (d x+c)^{4}}-\frac{3 b a^{2} \cosh (d x+c)^{2}}{4 d \sinh (d x+c)^{2}}-\frac{3 b^{2} a \cosh (d x+c)^{2}}{4 d \sinh (d x+c)^{4}}$

$$
+\frac{3 b^{2} a \cosh (d x+c)^{2}}{4 d \sinh (d x+c)^{2}}-\frac{b^{3}}{4 d \sinh (d x+c)^{4}}+\frac{b^{3}}{2 d \sinh (d x+c)^{2}}+\frac{b^{3} \ln (\tanh (d x+c))}{d}
$$

Problem 42: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{coth}(d x+c)^{4}}{a+b \operatorname{sech}(d x+c)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 77 leaves, 7 steps):

$$
\frac{x}{a}-\frac{b^{5 / 2} \operatorname{arctanh}\left(\frac{\sqrt{b} \tanh (d x+c)}{\sqrt{a+b}}\right)}{a(a+b)^{5 / 2} d}-\frac{(a+2 b) \operatorname{coth}(d x+c)}{(a+b)^{2} d}-\frac{\operatorname{coth}(d x+c)^{3}}{3(a+b) d}
$$

Result(type 3, 297 leaves):

$$
-\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3} a}{24 d(a+b)^{2}}-\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3} b}{24 d(a+b)^{2}}-\frac{5 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{8 d(a+b)^{2}}-\frac{9 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right) b}{8 d(a+b)^{2}}-\frac{1}{24 d \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3}(a+b)}
$$

$$
\begin{aligned}
& -\frac{5 a}{8 d(a+b)^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}-\frac{9 b}{8 d(a+b)^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}+\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)}{d a}-\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)}{d a} \\
& -\frac{b^{5 / 2} \ln \left(\sqrt{a+b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+2 \sqrt{b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+\sqrt{a+b}\right)}{2 d a(a+b)^{5 / 2}} \\
& +\frac{b^{5 / 2} \ln \left(\sqrt{a+b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}-2 \sqrt{b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+\sqrt{a+b}\right)}{2 d a(a+b)^{5 / 2}}
\end{aligned}
$$

Problem 43: Result more than twice size of optimal antiderivative.

$$
\int \frac{\tanh (d x+c)^{5}}{\left(a+b \operatorname{sech}(d x+c)^{2}\right)^{2}} d x
$$

Optimal(type 3, 72 leaves, 4 steps):

$$
\frac{(a+b)^{2}}{2 a^{2} b d\left(b+a \cosh (d x+c)^{2}\right)}+\frac{\ln (\cosh (d x+c))}{b^{2} d}+\frac{\left(\frac{1}{a^{2}}-\frac{1}{b^{2}}\right) \ln \left(b+a \cosh (d x+c)^{2}\right)}{2 d}
$$

Result(type 3, 350 leaves):

$$
\begin{aligned}
& \frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)}{d b^{2}}-\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)}{d a^{2}}-\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)}{d a^{2}} \\
& -\frac{2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}{d b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)} \\
& \quad-\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)}{2 d b^{2}} \\
& -\frac{2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}{d a\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)} \\
& +\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)}{2 d a^{2}}
\end{aligned}
$$

Problem 45: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{coth}(d x+c)^{2}}{\left(a+b \operatorname{sech}(d x+c)^{2}\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 107 leaves, 7 steps):

$$
\frac{x}{a^{2}}-\frac{b^{3 / 2}(5 a+2 b) \operatorname{arctanh}\left(\frac{\sqrt{b} \tanh (d x+c)}{\sqrt{a+b}}\right)}{2 a^{2}(a+b)^{5 / 2} d}-\frac{(2 a-b) \operatorname{coth}(d x+c)}{2 a(a+b)^{2} d}-\frac{b \operatorname{coth}(d x+c)}{2 a(a+b) d\left(a+b-b \tanh (d x+c)^{2}\right)}
$$

Result(type 3, 474 leaves):

$$
\begin{aligned}
& -\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{2 d\left(a^{2}+2 a b+b^{2}\right)}-\frac{1}{2 d(a+b)^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}+\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)}{d a^{2}}-\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)}{d a^{2}} \\
& -\frac{b^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3}}{d(a+b)^{2} a\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)} \\
& b^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right) \\
& d(a+b)^{2} a\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right) \\
& -\frac{5 b^{3 / 2} \ln \left(\sqrt{a+b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+2 \sqrt{b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+\sqrt{a+b}\right)}{4 d(a+b)^{5 / 2} a} \\
& +\frac{5 b^{3 / 2} \ln \left(\sqrt{a+b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}-2 \sqrt{b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+\sqrt{a+b}\right)}{4 d(a+b)^{5 / 2} a} \\
& -\frac{b^{5 / 2} \ln \left(\sqrt{a+b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+2 \sqrt{b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+\sqrt{a+b}\right)}{2 d(a+b)^{5 / 2} a^{2}} \\
& +\frac{b^{5 / 2} \ln \left(\sqrt{a+b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}-2 \sqrt{b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+\sqrt{a+b}\right)}{2 d(a+b)^{5 / 2} a^{2}}
\end{aligned}
$$

Problem 46: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{coth}(d x+c)^{3}}{\left(a+b \operatorname{sech}(d x+c)^{2}\right)^{2}} d x
$$

Optimal(type 3, 104 leaves, 4 steps):

$$
\frac{b^{3}}{2 a^{2}(a+b)^{2} d\left(b+a \cosh (d x+c)^{2}\right)}-\frac{\operatorname{csch}(d x+c)^{2}}{2(a+b)^{2} d}+\frac{b^{2}(3 a+b) \ln \left(b+a \cosh (d x+c)^{2}\right)}{2 a^{2}(a+b)^{3} d}+\frac{(a+3 b) \ln (\sinh (d x+c))}{(a+b)^{3} d}
$$

Result(type 3, 366 leaves):

$$
\begin{aligned}
& -\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}{8 d\left(a^{2}+2 a b+b^{2}\right)}-\frac{1}{8 d(a+b)^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}+\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right) a}{d(a+b)^{3}}+\frac{3 \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right) b}{d(a+b)^{3}}-\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)}{d a^{2}} \\
& -\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)}{d a^{2}}-\frac{2 b^{3} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}{d a(a+b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)} \\
& \quad+\frac{3 b^{2} \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)}{2 d a(a+b)^{3}} \\
& \quad+\frac{b^{3} \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)}{2 d a^{2}(a+b)^{3}}
\end{aligned}
$$

Problem 47: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{coth}(d x+c)}{\left(a+b \operatorname{sech}(d x+c)^{2}\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 124 leaves, 4 steps):

$$
-\frac{b^{3}}{4 a^{3}(a+b) d\left(b+a \cosh (d x+c)^{2}\right)^{2}}+\frac{b^{2}(3 a+2 b)}{2 a^{3}(a+b)^{2} d\left(b+a \cosh (d x+c)^{2}\right)}+\frac{b\left(3 a^{2}+3 a b+b^{2}\right) \ln \left(b+a \cosh (d x+c)^{2}\right)}{2 a^{3}(a+b)^{3} d}+\frac{\ln (\sinh (d x+c))}{(a+b)^{3} d}
$$

Result(type 3, 1045 leaves):

$$
\begin{aligned}
& \frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right)}{d(a+b)^{3}}-\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)}{d a^{3}}-\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)}{d a^{3}} \\
& -\frac{6 b^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{6}}{d(a+b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2}} \\
& -8 b^{3} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{6} \\
& -\frac{d(a+b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2} a}{}
\end{aligned}
$$

$$
\begin{aligned}
& 2 b^{4} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{6} \\
& d(a+b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2} a^{2} \\
& 12 b^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} \\
& d(a+b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2} \\
& 4 b^{3} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} \\
& d(a+b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2} a \\
& 4 b^{4} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} \\
& d(a+b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2} a^{2} \\
& 6 b^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} \\
& d(a+b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2} \\
& 8 b^{3} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} \\
& d(a+b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2} a \\
& 2 b^{4} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} \\
& d(a+b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2} a^{2} \\
& +\frac{3 b \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)}{2 d a(a+b)^{3}} \\
& +\frac{3 b^{2} \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)}{2 d a^{2}(a+b)^{3}} \\
& +\frac{b^{3} \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)}{2 d a^{3}(a+b)^{3}}
\end{aligned}
$$

Problem 48: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{coth}(d x+c)^{3}}{\left(a+b \operatorname{sech}(d x+c)^{2}\right)^{3}} d x
$$

Optimal(type 3, 146 leaves, 4 steps):

$$
\begin{aligned}
& -\frac{b^{4}}{4 a^{3}(a+b)^{2} d\left(b+a \cosh (d x+c)^{2}\right)^{2}}+\frac{b^{3}(2 a+b)}{a^{3}(a+b)^{3} d\left(b+a \cosh (d x+c)^{2}\right)}-\frac{\operatorname{csch}(d x+c)^{2}}{2(a+b)^{3} d}+\frac{b^{2}\left(6 a^{2}+4 a b+b^{2}\right) \ln \left(b+a \cosh (d x+c)^{2}\right)}{2 a^{3}(a+b)^{4} d} \\
& \quad+\frac{(4 b+a) \ln (\sinh (d x+c))}{(a+b)^{4} d}
\end{aligned}
$$

Result(type 3, 1127 leaves):

$$
-\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}{8 d\left(a^{3}+3 b a^{2}+3 b^{2} a+b^{3}\right)}-\frac{1}{8 d(a+b)^{3} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}+\frac{4 \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right) b}{d(a+b)^{4}}+\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right) a}{d(a+b)^{4}}-\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)}{d a^{3}}
$$

$$
-\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)}{d a^{3}}-\frac{8 b^{3} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{6}}{d(a+b)^{4}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2}}
$$

$$
10 b^{4} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{6}
$$

$$
d(a+b)^{4}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2} a
$$

$$
-\frac{2 b^{5} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{6}}{d a^{2}(a+b)^{4}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2}}
$$

$$
-\frac{16 b^{3} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}}{d(a+b)^{4}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2}}
$$

$$
+\frac{8 b^{4} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}}{d(a+b)^{4}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2} a}
$$

$$
+\frac{4 b^{5} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}}{d a^{2}(a+b)^{4}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2}}
$$

$$
\begin{aligned}
& -\frac{8 b^{3} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}{d(a+b)^{4}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2}} \\
& -\frac{10 b^{4} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}{d(a+b)^{4}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2} a} \\
& -\frac{2 b^{5} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}{d a^{2}(a+b)^{4}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)^{2}} \\
& +\frac{3 b^{2} \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)}{d a(a+b)^{4}} \\
& +\frac{2 b^{3} \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)}{d a^{2}(a+b)^{4}} \\
& +\frac{b^{4} \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a+\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} b+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+a+b\right)}{2 d a^{3}(a+b)^{4}}
\end{aligned}
$$

Problem 49: Unable to integrate problem.

$$
\int\left(a+b \operatorname{sech}(x)^{2}\right)^{3 / 2} \tanh (x)^{2} \mathrm{~d} x
$$

Optimal(type 3, 103 leaves, 9 steps):
$a^{3 / 2} \operatorname{arctanh}\left(\frac{\sqrt{a} \tanh (x)}{\sqrt{a+b-b \tanh (x)^{2}}}\right)-\frac{\left(3 a^{2}-6 a b-b^{2}\right) \arctan \left(\frac{\sqrt{b} \tanh (x)}{\sqrt{a+b-b \tanh (x)^{2}}}\right)}{8 \sqrt{b}}-\frac{(5 a+b) \sqrt{a+b-b \tanh (x)^{2}} \tanh (x)}{8}$
$+\frac{b \sqrt{a+b-b \tanh (x)^{2}} \tanh (x)^{3}}{4}$
Result(type 8, 17 leaves):

$$
\int\left(a+b \operatorname{sech}(x)^{2}\right)^{3 / 2} \tanh (x)^{2} \mathrm{~d} x
$$

Problem 50: Unable to integrate problem.

$$
\int\left(a+b \operatorname{sech}(x)^{2}\right)^{3 / 2} \mathrm{~d} x
$$

Optimal (type 3, 70 leaves, 7 steps):

$$
a^{3 / 2} \operatorname{arctanh}\left(\frac{\sqrt{a} \tanh (x)}{\sqrt{a+b-b \tanh (x)^{2}}}\right)+\frac{(3 a+b) \arctan \left(\frac{\sqrt{b} \tanh (x)}{\sqrt{a+b-b \tanh (x)^{2}}}\right) \sqrt{b}}{2}+\frac{b \sqrt{a+b-b \tanh (x)^{2}} \tanh (x)}{2}
$$

Result(type 8, 12 leaves):

$$
\int\left(a+b \operatorname{sech}(x)^{2}\right)^{3 / 2} \mathrm{~d} x
$$

Problem 51: Unable to integrate problem.

$$
\int \frac{\tanh (x)^{2}}{\sqrt{a+b \operatorname{sech}(x)^{2}}} \mathrm{~d} x
$$

Optimal(type 3, 48 leaves, 7 steps):

$$
\frac{\operatorname{arctanh}\left(\frac{\sqrt{a} \tanh (x)}{\sqrt{a+b-b \tanh (x)^{2}}}\right)}{\sqrt{a}}-\frac{\arctan \left(\frac{\sqrt{b} \tanh (x)}{\sqrt{a+b-b \tanh (x)^{2}}}\right)}{\sqrt{b}}
$$

Result(type 8, 17 leaves):

$$
\int \frac{\tanh (x)^{2}}{\sqrt{a+b \operatorname{sech}(x)^{2}}} \mathrm{~d} x
$$

Problem 52: Unable to integrate problem.

$$
\int \frac{\operatorname{coth}(x)}{\sqrt{a+b \operatorname{sech}(x)^{2}}} \mathrm{~d} x
$$

Optimal(type 3, 44 leaves, 7 steps):

$$
\frac{\operatorname{arctanh}\left(\frac{\sqrt{a+b \operatorname{sech}(x)^{2}}}{\sqrt{a}}\right)}{\sqrt{a}}-\frac{\operatorname{arctanh}\left(\frac{\sqrt{a+b \operatorname{sech}(x)^{2}}}{\sqrt{a+b}}\right)}{\sqrt{a+b}}
$$

Result(type 8, 15 leaves):

$$
\int \frac{\operatorname{coth}(x)}{\sqrt{a+b \operatorname{sech}(x)^{2}}} d x
$$

Problem 53: Unable to integrate problem.

$$
\int \frac{\tanh (x)^{3}}{\left(a+b \operatorname{sech}(x)^{2}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 44 leaves, 5 steps):

$$
\frac{\operatorname{arctanh}\left(\frac{\sqrt{a+b \operatorname{sech}(x)^{2}}}{\sqrt{a}}\right)}{a^{3 / 2}}+\frac{-a-b}{a b \sqrt{a+b \operatorname{sech}(x)^{2}}}
$$

Result(type 8, 17 leaves):

$$
\int \frac{\tanh (x)^{3}}{\left(a+b \operatorname{sech}(x)^{2}\right)^{3 / 2}} \mathrm{~d} x
$$

Problem 55: Unable to integrate problem.

$$
\int \frac{1}{\left(a+b \operatorname{sech}(x)^{2}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 49 leaves, 4 steps):

Result(type 8, 12 leaves):

$$
\int \frac{1}{\left(a+b \operatorname{sech}(x)^{2}\right)^{3 / 2}} \mathrm{~d} x
$$

Problem 56: Unable to integrate problem.

$$
\int \frac{1}{\left(a+b \operatorname{sech}(x)^{2}\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 81 leaves, 6 steps):

Result(type 8, 12 leaves):

$$
\int \frac{1}{\left(a+b \operatorname{sech}(x)^{2}\right)^{5 / 2}} \mathrm{~d} x
$$

Problem 57: Unable to integrate problem.

$$
\int \frac{1}{\left(a+b \operatorname{sech}(d x+c)^{2}\right)^{7 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 165 leaves, 7 steps):
$\frac{\operatorname{arctanh}\left(\frac{\sqrt{a} \tanh (d x+c)}{\sqrt{a+b-b \tanh (d x+c)^{2}}}\right)}{a^{7 / 2} d}-\frac{b\left(33 a^{2}+40 a b+15 b^{2}\right) \tanh (d x+c)}{15 a^{3}(a+b)^{3} d \sqrt{a+b-b \tanh (d x+c)^{2}}}-\frac{b \tanh (d x+c)}{5 a(a+b) d\left(a+b-b \tanh (d x+c)^{2}\right)^{5 / 2}}$

$$
-\frac{b(9 a+5 b) \tanh (d x+c)}{15 a^{2}(a+b)^{2} d\left(a+b-b \tanh (d x+c)^{2}\right)^{3 / 2}}
$$

Result(type 8, 16 leaves):

$$
\int \frac{1}{\left(a+b \operatorname{sech}(d x+c)^{2}\right)^{7 / 2}} \mathrm{~d} x
$$

Summary of Integration Test Results
140 integration problems

A - 65 optimal antiderivatives
B - 35 more than twice size of optimal antiderivatives
C - O unnecessarily complex antiderivatives
D - 40 unable to integrate problems
E - O integration timeouts

[^0]: Problem 25: Result more than twice size of optimal antiderivative.

